Cargando…
Chromatin interaction neural network (ChINN): a machine learning-based method for predicting chromatin interactions from DNA sequences
Chromatin interactions play important roles in regulating gene expression. However, the availability of genome-wide chromatin interaction data is limited. We develop a computational method, chromatin interaction neural network (ChINN), to predict chromatin interactions between open chromatin regions...
Autores principales: | Cao, Fan, Zhang, Yu, Cai, Yichao, Animesh, Sambhavi, Zhang, Ying, Akincilar, Semih Can, Loh, Yan Ping, Li, Xinya, Chng, Wee Joo, Tergaonkar, Vinay, Kwoh, Chee Keong, Fullwood, Melissa J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365954/ https://www.ncbi.nlm.nih.gov/pubmed/34399797 http://dx.doi.org/10.1186/s13059-021-02453-5 |
Ejemplares similares
-
Chromatin loop anchors predict transcript and exon usage
por: Zhang, Yu, et al.
Publicado: (2021) -
Long-Distance Repression by Human Silencers: Chromatin Interactions and Phase Separation in Silencers
por: Zhang, Ying, et al.
Publicado: (2022) -
H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions
por: Cai, Yichao, et al.
Publicado: (2021) -
Chromatin Interaction Analysis with Paired-End Tag Sequencing (ChIA-PET) for Mapping Chromatin Interactions and Understanding Transcription Regulation
por: Goh, Yufen, et al.
Publicado: (2012) -
Reactivation of telomerase in cancer
por: Akincilar, Semih Can, et al.
Publicado: (2016)