Cargando…
Development and validation of a novel blending machine learning model for hospital mortality prediction in ICU patients with Sepsis
BACKGROUND: Early prediction of hospital mortality is crucial for ICU patients with sepsis. This study aimed to develop a novel blending machine learning (ML) model for hospital mortality prediction in ICU patients with sepsis. METHODS: Two ICU databases were employed: eICU Collaborative Research Da...
Autores principales: | Zeng, Zhixuan, Yao, Shuo, Zheng, Jianfei, Gong, Xun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365981/ https://www.ncbi.nlm.nih.gov/pubmed/34399809 http://dx.doi.org/10.1186/s13040-021-00276-5 |
Ejemplares similares
-
Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU
por: Kong, Guilan, et al.
Publicado: (2020) -
Neural networks based on attention architecture are robust to data missingness for early predicting hospital mortality in
intensive care unit patients
por: Zeng, Zhixuan, et al.
Publicado: (2023) -
On classifying sepsis heterogeneity in the ICU: insight using machine learning
por: Ibrahim, Zina M, et al.
Publicado: (2020) -
Using Machine Learning to Develop and Validate an In-Hospital Mortality Prediction Model for Patients with Suspected Sepsis
por: Chao, Hsiao-Yun, et al.
Publicado: (2022) -
A Machine Learning-Based Prediction of Hospital Mortality in Patients With Postoperative Sepsis
por: Yao, Ren-qi, et al.
Publicado: (2020)