Cargando…
Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training
The inference of cortical sulcal labels often focuses on deep (primary and secondary) sulcal regions, whereas shallow (tertiary) sulcal regions are largely overlooked in the literature due to the scarcity of manual/well-defined annotations and their large neuroanatomical variability. In this paper,...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8366030/ https://www.ncbi.nlm.nih.gov/pubmed/33497773 http://dx.doi.org/10.1016/j.neuroimage.2021.117758 |
_version_ | 1783738826837983232 |
---|---|
author | Lyu, Ilwoo Bao, Shuxing Hao, Lingyan Yao, Jewelia Miller, Jacob A. Voorhies, Willa Taylor, Warren D. Bunge, Silvia A. Weiner, Kevin S. Landman, Bennett A. |
author_facet | Lyu, Ilwoo Bao, Shuxing Hao, Lingyan Yao, Jewelia Miller, Jacob A. Voorhies, Willa Taylor, Warren D. Bunge, Silvia A. Weiner, Kevin S. Landman, Bennett A. |
author_sort | Lyu, Ilwoo |
collection | PubMed |
description | The inference of cortical sulcal labels often focuses on deep (primary and secondary) sulcal regions, whereas shallow (tertiary) sulcal regions are largely overlooked in the literature due to the scarcity of manual/well-defined annotations and their large neuroanatomical variability. In this paper, we present an automated framework for regional labeling of both primary/secondary and tertiary sulci of the dorsal portion of lateral prefrontal cortex (LPFC) using spherical convolutional neural networks. We propose two core components that enhance the inference of sulcal labels to overcome such large neuroanatomical variability: (1) surface data augmentation and (2) context-aware training. (1) To take into account neuroanatomical variability, we synthesize training data from the proposed feature space that embeds intermediate deformation trajectories of spherical data in a rigid to non-rigid fashion, which bridges an augmentation gap in conventional rotation data augmentation. (2) Moreover, we design a two-stage training process to improve labeling accuracy of tertiary sulci by informing the biological associations in neuroanatomy: inference of primary/secondary sulci and then their spatial likelihood to guide the definition of tertiary sulci. In the experiments, we evaluate our method on 13 deep and shallow sulci of human LPFC in two independent data sets with different age ranges: pediatric (N = 60) and adult (N = 36) cohorts. We compare the proposed method with a conventional multi-atlas approach and spherical convolutional neural networks without/with rotation data augmentation. In both cohorts, the proposed data augmentation improves labeling accuracy of deep and shallow sulci over the baselines, and the proposed context-aware training offers further improvement in the labeling of shallow sulci over the proposed data augmentation. We share our tools with the field and discuss applications of our results for understanding neuroanatomical-functional organization of LPFC and the rest of cortex (https://github.com/ilwoolyu/SphericalLabeling). |
format | Online Article Text |
id | pubmed-8366030 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-83660302021-08-16 Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training Lyu, Ilwoo Bao, Shuxing Hao, Lingyan Yao, Jewelia Miller, Jacob A. Voorhies, Willa Taylor, Warren D. Bunge, Silvia A. Weiner, Kevin S. Landman, Bennett A. Neuroimage Article The inference of cortical sulcal labels often focuses on deep (primary and secondary) sulcal regions, whereas shallow (tertiary) sulcal regions are largely overlooked in the literature due to the scarcity of manual/well-defined annotations and their large neuroanatomical variability. In this paper, we present an automated framework for regional labeling of both primary/secondary and tertiary sulci of the dorsal portion of lateral prefrontal cortex (LPFC) using spherical convolutional neural networks. We propose two core components that enhance the inference of sulcal labels to overcome such large neuroanatomical variability: (1) surface data augmentation and (2) context-aware training. (1) To take into account neuroanatomical variability, we synthesize training data from the proposed feature space that embeds intermediate deformation trajectories of spherical data in a rigid to non-rigid fashion, which bridges an augmentation gap in conventional rotation data augmentation. (2) Moreover, we design a two-stage training process to improve labeling accuracy of tertiary sulci by informing the biological associations in neuroanatomy: inference of primary/secondary sulci and then their spatial likelihood to guide the definition of tertiary sulci. In the experiments, we evaluate our method on 13 deep and shallow sulci of human LPFC in two independent data sets with different age ranges: pediatric (N = 60) and adult (N = 36) cohorts. We compare the proposed method with a conventional multi-atlas approach and spherical convolutional neural networks without/with rotation data augmentation. In both cohorts, the proposed data augmentation improves labeling accuracy of deep and shallow sulci over the baselines, and the proposed context-aware training offers further improvement in the labeling of shallow sulci over the proposed data augmentation. We share our tools with the field and discuss applications of our results for understanding neuroanatomical-functional organization of LPFC and the rest of cortex (https://github.com/ilwoolyu/SphericalLabeling). 2021-01-23 2021-04-01 /pmc/articles/PMC8366030/ /pubmed/33497773 http://dx.doi.org/10.1016/j.neuroimage.2021.117758 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ) |
spellingShingle | Article Lyu, Ilwoo Bao, Shuxing Hao, Lingyan Yao, Jewelia Miller, Jacob A. Voorhies, Willa Taylor, Warren D. Bunge, Silvia A. Weiner, Kevin S. Landman, Bennett A. Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training |
title | Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training |
title_full | Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training |
title_fullStr | Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training |
title_full_unstemmed | Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training |
title_short | Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training |
title_sort | labeling lateral prefrontal sulci using spherical data augmentation and context-aware training |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8366030/ https://www.ncbi.nlm.nih.gov/pubmed/33497773 http://dx.doi.org/10.1016/j.neuroimage.2021.117758 |
work_keys_str_mv | AT lyuilwoo labelinglateralprefrontalsulciusingsphericaldataaugmentationandcontextawaretraining AT baoshuxing labelinglateralprefrontalsulciusingsphericaldataaugmentationandcontextawaretraining AT haolingyan labelinglateralprefrontalsulciusingsphericaldataaugmentationandcontextawaretraining AT yaojewelia labelinglateralprefrontalsulciusingsphericaldataaugmentationandcontextawaretraining AT millerjacoba labelinglateralprefrontalsulciusingsphericaldataaugmentationandcontextawaretraining AT voorhieswilla labelinglateralprefrontalsulciusingsphericaldataaugmentationandcontextawaretraining AT taylorwarrend labelinglateralprefrontalsulciusingsphericaldataaugmentationandcontextawaretraining AT bungesilviaa labelinglateralprefrontalsulciusingsphericaldataaugmentationandcontextawaretraining AT weinerkevins labelinglateralprefrontalsulciusingsphericaldataaugmentationandcontextawaretraining AT landmanbennetta labelinglateralprefrontalsulciusingsphericaldataaugmentationandcontextawaretraining |