Cargando…
Clinical Target Volume Auto-Segmentation of Esophageal Cancer for Radiotherapy After Radical Surgery Based on Deep Learning
Radiotherapy plays an important role in controlling the local recurrence of esophageal cancer after radical surgery. Segmentation of the clinical target volume is a key step in radiotherapy treatment planning, but it is time-consuming and operator-dependent. This paper introduces a deep dilated conv...
Autores principales: | Cao, Ruifen, Pei, Xi, Ge, Ning, Zheng, Chunhou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8366129/ https://www.ncbi.nlm.nih.gov/pubmed/34387104 http://dx.doi.org/10.1177/15330338211034284 |
Ejemplares similares
-
Comparison of atlas-based auto-segmentation accuracy for radiotherapy in prostate cancer
por: Aoyama, Takahiro, et al.
Publicado: (2021) -
Technical note: Atlas‐based Auto‐segmentation of masticatory muscles for head and neck cancer radiotherapy
por: Zhang, Xiangguo, et al.
Publicado: (2020) -
Deep learning‐based auto‐segmentation of clinical target volumes for radiotherapy treatment of cervical cancer
por: Ma, Chen‐Ying, et al.
Publicado: (2021) -
DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion
por: Cao, Ruifen, et al.
Publicado: (2021) -
Clinical evaluation of deep learning–based clinical target volume three-channel auto-segmentation algorithm for adaptive radiotherapy in cervical cancer
por: Ma, Chen-ying, et al.
Publicado: (2022)