Cargando…
Artificial intelligence explainability: the technical and ethical dimensions
In recent years, several new technical methods have been developed to make AI-models more transparent and interpretable. These techniques are often referred to collectively as ‘AI explainability’ or ‘XAI’ methods. This paper presents an overview of XAI methods, and links them to stakeholder purposes...
Autores principales: | McDermid, John A., Jia, Yan, Porter, Zoe, Habli, Ibrahim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8366909/ https://www.ncbi.nlm.nih.gov/pubmed/34398656 http://dx.doi.org/10.1098/rsta.2020.0363 |
Ejemplares similares
-
Artificial intelligence in health care: accountability and safety
por: Habli, Ibrahim, et al.
Publicado: (2020) -
Enhancing COVID-19 decision making by creating an assurance case for epidemiological models
por: Habli, Ibrahim, et al.
Publicado: (2020) -
Ethical content in artificial intelligence systems: A demand explained in three critical points
por: Bertoncini, Ana Luize Corrêa, et al.
Publicado: (2023) -
Assuring safe artificial intelligence in critical ambulance service response: study protocol
por: Sujan, Mark, et al.
Publicado: (2022) -
To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems
por: Amann, Julia, et al.
Publicado: (2022)