Cargando…
Prediction Model of Anastomotic Leakage Among Esophageal Cancer Patients After Receiving an Esophagectomy: Machine Learning Approach
BACKGROUND: Anastomotic leakage (AL) is one of the severe postoperative adverse events (5%-30%), and it is related to increased medical costs in cancer patients who undergo esophagectomies. Machine learning (ML) methods show good performance at predicting risk for AL. However, AL risk prediction bas...
Autores principales: | Zhao, Ziran, Cheng, Xi, Sun, Xiao, Ma, Shanrui, Feng, Hao, Zhao, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367102/ https://www.ncbi.nlm.nih.gov/pubmed/34313597 http://dx.doi.org/10.2196/27110 |
Ejemplares similares
-
Anastomotic leakage after esophagectomy for esophageal cancer: definitions, diagnostics, and treatment
por: Fabbi, M, et al.
Publicado: (2020) -
Development and validation of a nomogram to predict anastomotic leakage after esophagectomy for esophageal carcinoma
por: Yu, Wen-Quan, et al.
Publicado: (2021) -
Impact of intravenous injection of glucagon on anastomotic leakage in esophagectomy
por: Kita, Ryosuke, et al.
Publicado: (2023) -
Anastomotic reinforcement with omentoplasty reduces anastomotic leakage for minimally invasive esophagectomy with cervical anastomosis
por: Zhou, Dong, et al.
Publicado: (2018) -
Practice of cervical end-esophageal exteriorization in patients with severe intrathoracic anastomotic leakage after esophagectomy
por: Wang, Huijuan, et al.
Publicado: (2018)