Cargando…
Effects of Background Colors, Flashes, and Exposure Values on the Accuracy of a Smartphone-Based Pill Recognition System Using a Deep Convolutional Neural Network: Deep Learning and Experimental Approach
BACKGROUND: Pill image recognition systems are difficult to develop due to differences in pill color, which are influenced by external factors such as the illumination from and the presence of a flash. OBJECTIVE: In this study, the differences in color between reference images and real-world images...
Autores principales: | Cha, KyeongMin, Woo, Hyun-Ki, Park, Dohyun, Chang, Dong Kyung, Kang, Mira |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367115/ https://www.ncbi.nlm.nih.gov/pubmed/34319239 http://dx.doi.org/10.2196/26000 |
Ejemplares similares
-
A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone
por: Qi, Wen, et al.
Publicado: (2019) -
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022) -
Smartphone Location Recognition: A Deep Learning-Based Approach
por: Klein, Itzik
Publicado: (2019) -
Smartphone Location Recognition with Unknown Modes in Deep Feature Space
por: Daniel, Nati, et al.
Publicado: (2021) -
The use of deep learning for smartphone-based human activity recognition
por: Stampfler, Tristan, et al.
Publicado: (2023)