Cargando…
Head and Tail Entity Fusion Model in Medical Knowledge Graph Construction: Case Study for Pituitary Adenoma
BACKGROUND: Pituitary adenoma is one of the most common central nervous system tumors. The diagnosis and treatment of pituitary adenoma remain very difficult. Misdiagnosis and recurrence often occur, and experienced neurosurgeons are in serious shortage. A knowledge graph can help interns quickly un...
Autores principales: | Fang, An, Lou, Pei, Hu, Jiahui, Zhao, Wanqing, Feng, Ming, Ren, Huiling, Chen, Xianlai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367125/ https://www.ncbi.nlm.nih.gov/pubmed/34057414 http://dx.doi.org/10.2196/28218 |
Ejemplares similares
-
Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records
por: Fang, An, et al.
Publicado: (2022) -
Potential Target Discovery and Drug Repurposing for Coronaviruses: Study Involving a Knowledge Graph–Based Approach
por: Lou, Pei, et al.
Publicado: (2023) -
A Knowledge Graph Entity Disambiguation Method Based on Entity-Relationship Embedding and Graph Structure Embedding
por: Ma, Jiangtao, et al.
Publicado: (2021) -
Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned
por: Berrendorf, Max, et al.
Publicado: (2020) -
Joint Word and Entity Embeddings for Entity Retrieval from a Knowledge Graph
por: Nikolaev, Fedor, et al.
Publicado: (2020)