Cargando…
Candidemia Risk Prediction (CanDETEC) Model for Patients With Malignancy: Model Development and Validation in a Single-Center Retrospective Study
BACKGROUND: Appropriate empirical treatment for candidemia is associated with reduced mortality; however, the timely diagnosis of candidemia in patients with sepsis remains poor. OBJECTIVE: We aimed to use machine learning algorithms to develop and validate a candidemia prediction model for patients...
Autores principales: | Yoo, Junsang, Kim, Si-Ho, Hur, Sujeong, Ha, Juhyung, Huh, Kyungmin, Cha, Won Chul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367162/ https://www.ncbi.nlm.nih.gov/pubmed/34309570 http://dx.doi.org/10.2196/24651 |
Ejemplares similares
-
Correction: Candidemia Risk Prediction (CanDETEC) Model for Patients With Malignancy: Model Development and Validation in a Single-Center Retrospective Study
por: Yoo, Junsang, et al.
Publicado: (2022) -
A Machine Learning–Based Algorithm for the Prediction of Intensive Care Unit Delirium (PRIDE): Retrospective Study
por: Hur, Sujeong, et al.
Publicado: (2021) -
Healthcare Professionals’ Expectations of Medical Artificial Intelligence and Strategies for its Clinical Implementation: A Qualitative Study
por: Yoo, Junsang, et al.
Publicado: (2023) -
Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study
por: Hur, Sujeong, et al.
Publicado: (2021) -
DetecDiv, a generalist deep-learning platform for automated cell division tracking and survival analysis
por: Aspert, Théo, et al.
Publicado: (2022)