Cargando…
Effective Treatment Recommendations for Type 2 Diabetes Management Using Reinforcement Learning: Treatment Recommendation Model Development and Validation
BACKGROUND: Type 2 diabetes mellitus (T2DM) and its related complications represent a growing economic burden for many countries and health systems. Diabetes complications can be prevented through better disease control, but there is a large gap between the recommended treatment and the treatment th...
Autores principales: | Sun, Xingzhi, Bee, Yong Mong, Lam, Shao Wei, Liu, Zhuo, Zhao, Wei, Chia, Sing Yi, Abdul Kadir, Hanis, Wu, Jun Tian, Ang, Boon Yew, Liu, Nan, Lei, Zuo, Xu, Zhuoyang, Zhao, Tingting, Hu, Gang, Xie, Guotong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367185/ https://www.ncbi.nlm.nih.gov/pubmed/34292166 http://dx.doi.org/10.2196/27858 |
Ejemplares similares
-
Deep reinforcement learning for personalized treatment recommendation
por: Liu, Mingyang, et al.
Publicado: (2022) -
Establishment of the SingHealth Diabetes Registry
por: Lim, Daniel Yan Zheng, et al.
Publicado: (2021) -
Construction of a Non-Mutually Exclusive Decision Tree for Medication Recommendation of Chronic Heart Failure
por: Bai, Yongyi, et al.
Publicado: (2022) -
Influence of guideline adherence and parameter control on the clinical outcomes in patients with diabetic nephropathy
por: Lu, Jingru, et al.
Publicado: (2020) -
Near-optimal Individualized Treatment Recommendations
por: Meng, Haomiao, et al.
Publicado: (2020)