Cargando…
Fast deep neural correspondence for tracking and identifying neurons in C. elegans using semi-synthetic training
We present an automated method to track and identify neurons in C. elegans, called ‘fast Deep Neural Correspondence’ or fDNC, based on the transformer network architecture. The model is trained once on empirically derived semi-synthetic data and then predicts neural correspondence across held-out re...
Autores principales: | Yu, Xinwei, Creamer, Matthew S, Randi, Francesco, Sharma, Anuj K, Linderman, Scott W, Leifer, Andrew M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367385/ https://www.ncbi.nlm.nih.gov/pubmed/34259623 http://dx.doi.org/10.7554/eLife.66410 |
Ejemplares similares
-
Neural signal propagation atlas of Caenorhabditis elegans
por: Randi, Francesco, et al.
Publicado: (2023) -
Decoding locomotion from population neural activity in moving C. elegans
por: Hallinen, Kelsey M, et al.
Publicado: (2021) -
TWISP: A Transgenic Worm for Interrogating Signal Propagation in C. elegans
por: Sharma, Anuj Kumar, et al.
Publicado: (2023) -
Correcting motion induced fluorescence artifacts in two-channel neural imaging
por: Creamer, Matthew S., et al.
Publicado: (2022) -
Temporal processing and context dependency in Caenorhabditis elegans response to mechanosensation
por: Liu, Mochi, et al.
Publicado: (2018)