Cargando…

In Vitro Utilization Characteristics of Maltobionic Acid and Its Effects on Bowel Movements in Healthy Subjects

We examined the in vitro digestibility of maltobionic acid, obtained from enzymatic oxidation of maltose, its utilization by intestinal bacteria, and its biological effects on the bowel movements in healthy subjects. We found that maltobionic acid is not digested in vitro by saliva, gastric juice, o...

Descripción completa

Detalles Bibliográficos
Autores principales: Fukami, Ken, Suehiro, Daiki, Ohnishi, Motoko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japanese Society of Applied Glycoscience 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367634/
https://www.ncbi.nlm.nih.gov/pubmed/34429693
http://dx.doi.org/10.5458/jag.jag.JAG-2019_0013
Descripción
Sumario:We examined the in vitro digestibility of maltobionic acid, obtained from enzymatic oxidation of maltose, its utilization by intestinal bacteria, and its biological effects on the bowel movements in healthy subjects. We found that maltobionic acid is not digested in vitro by saliva, gastric juice, or pancreatic juice. Moreover, it is digested only to a small extent by small intestinal enzymes. Among the 24 strains of intestinal bacteria, maltobionic acid was selectively utilized by Bifidobacterium dentium and Bi. adolescentis. We also evaluated the influence of long-term ingestion of maltobionic acid calcium salt on bowel movements in healthy Japanese women by a randomized, double-blind, placebo-controlled, crossover trial. Thirty-four subjects completed the study, and no adverse events related to the test food were observed. Ten subjects were excluded prior to the efficacy analysis because of conflict with the control criteria; the remaining 24 subjects were analyzed. Intake of test food containing 4 g maltobionic acid for 4 weeks caused a significant increase in the stool frequency, significant improvement in stool form scale and CAS-MT total scores as compared with the placebo group. These results suggest that maltobionic acid is an indigestible carbohydrate and is a promising therapeutic agent for improving the intestinal environment.