Cargando…

Differentiation of immortalized human multi-lineage progenitor to alveolar type 2-like cells: angiotensin-converting enzyme 2 expression and binding of severe acute respiratory syndrome coronavirus 2 spike and spike 1 proteins

Along with the nasal epithelium, the lung epithelium is a portal of entry for sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and many other respiratory viruses. In the case of SARS-CoV-2, the virus surface spike proteins bind to the angiotensin-converting enzyme 2 (ACE-2) receptor to f...

Descripción completa

Detalles Bibliográficos
Autores principales: Collins, Daniel P., Osborn, Mark J., Steer, Clifford J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367755/
https://www.ncbi.nlm.nih.gov/pubmed/34551876
http://dx.doi.org/10.1016/j.jcyt.2021.07.017
_version_ 1783739079757660160
author Collins, Daniel P.
Osborn, Mark J.
Steer, Clifford J.
author_facet Collins, Daniel P.
Osborn, Mark J.
Steer, Clifford J.
author_sort Collins, Daniel P.
collection PubMed
description Along with the nasal epithelium, the lung epithelium is a portal of entry for sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and many other respiratory viruses. In the case of SARS-CoV-2, the virus surface spike proteins bind to the angiotensin-converting enzyme 2 (ACE-2) receptor to facilitate entry into the respiratory epithelium. Alveolar type 2 (AT2) cells are committed respiratory progenitor cells responsible for the integrity and regeneration of the respiratory epithelium and production of respiratory surfactant proteins. AT2 cells express high levels of surface ACE-2 and thus are a leading target for primary infection by SARS-CoV-2. This study describes a method for directly differentiating telomerase reverse transcriptase-immortalized human cord blood-derived multi-lineage progenitor cells (MLPCs) to AT2-like cells for the purpose of generating an in vitro cellular platform for viral studies. Differentiation was confirmed with the acquisition of AT2 and absence of alveolar type 1 (AT1) specific markers by confocal microscopy. Expression of the ACE-2 receptor was confirmed by immunofluorescence antibody staining, quantitative reverse transcription polymerase chain reaction and binding of biotinylated SARS-CoV-2 spike and spike 1 proteins. The binding of biotinylated spike proteins was specifically blocked by unlabeled spike proteins and neutralizing antibodies. Additionally, it was demonstrated that the spike protein was internalized after binding to the surface membrane of the cells. The authors defined the culture conditions that enabled AT2-like cells to be repeatedly passaged and cryopreserved without further differentiation to AT1. The authors’ method provides a stable and renewable source of AT2 cells for respiratory viral binding, blocking and uptake studies.
format Online
Article
Text
id pubmed-8367755
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-83677552021-08-17 Differentiation of immortalized human multi-lineage progenitor to alveolar type 2-like cells: angiotensin-converting enzyme 2 expression and binding of severe acute respiratory syndrome coronavirus 2 spike and spike 1 proteins Collins, Daniel P. Osborn, Mark J. Steer, Clifford J. Cytotherapy Full-Length Article Along with the nasal epithelium, the lung epithelium is a portal of entry for sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and many other respiratory viruses. In the case of SARS-CoV-2, the virus surface spike proteins bind to the angiotensin-converting enzyme 2 (ACE-2) receptor to facilitate entry into the respiratory epithelium. Alveolar type 2 (AT2) cells are committed respiratory progenitor cells responsible for the integrity and regeneration of the respiratory epithelium and production of respiratory surfactant proteins. AT2 cells express high levels of surface ACE-2 and thus are a leading target for primary infection by SARS-CoV-2. This study describes a method for directly differentiating telomerase reverse transcriptase-immortalized human cord blood-derived multi-lineage progenitor cells (MLPCs) to AT2-like cells for the purpose of generating an in vitro cellular platform for viral studies. Differentiation was confirmed with the acquisition of AT2 and absence of alveolar type 1 (AT1) specific markers by confocal microscopy. Expression of the ACE-2 receptor was confirmed by immunofluorescence antibody staining, quantitative reverse transcription polymerase chain reaction and binding of biotinylated SARS-CoV-2 spike and spike 1 proteins. The binding of biotinylated spike proteins was specifically blocked by unlabeled spike proteins and neutralizing antibodies. Additionally, it was demonstrated that the spike protein was internalized after binding to the surface membrane of the cells. The authors defined the culture conditions that enabled AT2-like cells to be repeatedly passaged and cryopreserved without further differentiation to AT1. The authors’ method provides a stable and renewable source of AT2 cells for respiratory viral binding, blocking and uptake studies. Elsevier 2021-12 2021-08-17 /pmc/articles/PMC8367755/ /pubmed/34551876 http://dx.doi.org/10.1016/j.jcyt.2021.07.017 Text en 38; Gene Therapy. Published by Elsevier Inc. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Full-Length Article
Collins, Daniel P.
Osborn, Mark J.
Steer, Clifford J.
Differentiation of immortalized human multi-lineage progenitor to alveolar type 2-like cells: angiotensin-converting enzyme 2 expression and binding of severe acute respiratory syndrome coronavirus 2 spike and spike 1 proteins
title Differentiation of immortalized human multi-lineage progenitor to alveolar type 2-like cells: angiotensin-converting enzyme 2 expression and binding of severe acute respiratory syndrome coronavirus 2 spike and spike 1 proteins
title_full Differentiation of immortalized human multi-lineage progenitor to alveolar type 2-like cells: angiotensin-converting enzyme 2 expression and binding of severe acute respiratory syndrome coronavirus 2 spike and spike 1 proteins
title_fullStr Differentiation of immortalized human multi-lineage progenitor to alveolar type 2-like cells: angiotensin-converting enzyme 2 expression and binding of severe acute respiratory syndrome coronavirus 2 spike and spike 1 proteins
title_full_unstemmed Differentiation of immortalized human multi-lineage progenitor to alveolar type 2-like cells: angiotensin-converting enzyme 2 expression and binding of severe acute respiratory syndrome coronavirus 2 spike and spike 1 proteins
title_short Differentiation of immortalized human multi-lineage progenitor to alveolar type 2-like cells: angiotensin-converting enzyme 2 expression and binding of severe acute respiratory syndrome coronavirus 2 spike and spike 1 proteins
title_sort differentiation of immortalized human multi-lineage progenitor to alveolar type 2-like cells: angiotensin-converting enzyme 2 expression and binding of severe acute respiratory syndrome coronavirus 2 spike and spike 1 proteins
topic Full-Length Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367755/
https://www.ncbi.nlm.nih.gov/pubmed/34551876
http://dx.doi.org/10.1016/j.jcyt.2021.07.017
work_keys_str_mv AT collinsdanielp differentiationofimmortalizedhumanmultilineageprogenitortoalveolartype2likecellsangiotensinconvertingenzyme2expressionandbindingofsevereacuterespiratorysyndromecoronavirus2spikeandspike1proteins
AT osbornmarkj differentiationofimmortalizedhumanmultilineageprogenitortoalveolartype2likecellsangiotensinconvertingenzyme2expressionandbindingofsevereacuterespiratorysyndromecoronavirus2spikeandspike1proteins
AT steercliffordj differentiationofimmortalizedhumanmultilineageprogenitortoalveolartype2likecellsangiotensinconvertingenzyme2expressionandbindingofsevereacuterespiratorysyndromecoronavirus2spikeandspike1proteins