Cargando…
Using Base-ml to Learn Classification of Common Vestibular Disorders on DizzyReg Registry Data
Background: Multivariable analyses (MVA) and machine learning (ML) applied on large datasets may have a high potential to provide clinical decision support in neuro-otology and reveal further avenues for vestibular research. To this end, we build base-ml, a comprehensive MVA/ML software tool, and ap...
Autores principales: | Vivar, Gerome, Strobl, Ralf, Grill, Eva, Navab, Nassir, Zwergal, Andreas, Ahmadi, Seyed-Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367819/ https://www.ncbi.nlm.nih.gov/pubmed/34413823 http://dx.doi.org/10.3389/fneur.2021.681140 |
Ejemplares similares
-
A Set of Eight Key Questions Helps to Classify Common Vestibular Disorders—Results From the DizzyReg Patient Registry
por: Strobl, Ralf, et al.
Publicado: (2021) -
Chronic Vestibular Hypofunction Is Associated with Impaired Sleep: Results from the DizzyReg Patient Registry
por: Katzenberger, Benedict, et al.
Publicado: (2023) -
Development and validation of a classification algorithm to diagnose and differentiate spontaneous episodic vertigo syndromes: results from the DizzyReg patient registry
por: Groezinger, Michael, et al.
Publicado: (2020) -
Correction to: Development and validation of a classification algorithm to diagnose and differentiate spontaneous episodic vertigo syndromes: results from the DizzyReg patient registry
por: Groezinger, Michael, et al.
Publicado: (2020) -
Primary or secondary chronic functional dizziness: does it make a difference? A DizzyReg study in 356 patients
por: Habs, Maximilian, et al.
Publicado: (2020)