Cargando…
Dual-foci fast-scanning photoacoustic microscopy with 3.2-MHz A-line rate
We report fiber-based dual-foci fast-scanning OR-PAM that can double the scanning rate without compromising the imaging resolution, the field of view, and the detection sensitivity. To achieve fast scanning speed, the OR-PAM system uses a single-axis water-immersible resonant scanning mirror that ca...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367837/ https://www.ncbi.nlm.nih.gov/pubmed/34430201 http://dx.doi.org/10.1016/j.pacs.2021.100292 |
Sumario: | We report fiber-based dual-foci fast-scanning OR-PAM that can double the scanning rate without compromising the imaging resolution, the field of view, and the detection sensitivity. To achieve fast scanning speed, the OR-PAM system uses a single-axis water-immersible resonant scanning mirror that can confocally scan the optical and acoustic beams at 1018 Hz with a 3-mm range. Pulse energies of 45∼100-nJ are sufficient for acquiring vascular and oxygen-saturation images. The dual-foci method can double the B-scan rate to 2036 Hz. Using two lasers and stimulated Raman scattering, we achieve dual-wavelength excitation on both foci, and the total A-line rate is 3.2-MHz. In in vivo experiments, we inject epinephrine and monitor the hemodynamic and oxygen saturation response in the peripheral vessels at 1.7 Hz over 2.5 × 6.7 mm(2). Dual-foci OR-PAM offers a new imaging tool for the study of fast physiological and pathological changes. |
---|