Cargando…
Multitask machine learning models for predicting lipophilicity (logP) in the SAMPL7 challenge
Accurate prediction of lipophilicity—logP—based on molecular structures is a well-established field. Predictions of logP are often used to drive forward drug discovery projects. Driven by the SAMPL7 challenge, in this manuscript we describe the steps that were taken to construct a novel machine lear...
Autores principales: | Lenselink, Eelke B., Stouten, Pieter F. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367913/ https://www.ncbi.nlm.nih.gov/pubmed/34273053 http://dx.doi.org/10.1007/s10822-021-00405-6 |
Ejemplares similares
-
Partition Coefficients (logP) of Hydrolysable Tannins
por: Virtanen, Valtteri, et al.
Publicado: (2020) -
Energy-entropy prediction of octanol–water logP of SAMPL7 N-acyl sulfonamide bioisosters
por: Falcioni, Fabio, et al.
Publicado: (2021) -
Predicting the membrane permeability of organic fluorescent probes by the deep neural network based lipophilicity descriptor DeepFl-LogP
por: Soliman, Kareem, et al.
Publicado: (2021) -
JPlogP: an improved logP predictor trained using predicted data
por: Plante, Jeffrey, et al.
Publicado: (2018) -
Revisiting the Use of Quantum Chemical Calculations in LogP(octanol-water) Prediction
por: Roy, Dipankar, et al.
Publicado: (2023)