Cargando…
iCOVID: interpretable deep learning framework for early recovery-time prediction of COVID-19 patients
Most prior studies focused on developing models for the severity or mortality prediction of COVID-19 patients. However, effective models for recovery-time prediction are still lacking. Here, we present a deep learning solution named iCOVID that can successfully predict the recovery-time of COVID-19...
Autores principales: | Wang, Jun, Liu, Chen, Li, Jingwen, Yuan, Cheng, Zhang, Lichi, Jin, Cheng, Xu, Jianwei, Wang, Yaqi, Wen, Yaofeng, Lu, Hongbing, Li, Biao, Chen, Chang, Li, Xiangdong, Shen, Dinggang, Qian, Dahong, Wang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8367981/ https://www.ncbi.nlm.nih.gov/pubmed/34400751 http://dx.doi.org/10.1038/s41746-021-00496-3 |
Ejemplares similares
-
Applying an interpretable machine learning framework to study mobility inequity in the recovery phase of COVID-19 pandemic
por: Li, Zihao, et al.
Publicado: (2023) -
A prediction and interpretation machine learning framework of mortality risk among severe infection patients with pseudomonas aeruginosa
por: Cui, Chen, et al.
Publicado: (2022) -
An interpretable machine learning framework for diagnosis and prognosis of COVID-19
por: Fan, Yongxian, et al.
Publicado: (2023) -
An interpretable deep learning framework for genome-informed precision oncology
por: Ren, Shuangxia, et al.
Publicado: (2023) -
Learning and interpreting the gene regulatory grammar in a deep learning framework
por: Chen, Ling, et al.
Publicado: (2020)