Cargando…
Separation of surface oxide from bulk Ni by selective Ni 3p photoelectron spectroscopy for chemical analysis in coincidence with Ni M-edge Auger electrons
The chemical shift of core level binding energies makes electron spectroscopy for chemical analysis (ESCA) a workhorse analytical tool for science and industry. For some elements, close lying and overlapping spectral features within the natural life time broadening restrict applications. We establis...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8368013/ https://www.ncbi.nlm.nih.gov/pubmed/34400717 http://dx.doi.org/10.1038/s41598-021-96108-x |
Sumario: | The chemical shift of core level binding energies makes electron spectroscopy for chemical analysis (ESCA) a workhorse analytical tool for science and industry. For some elements, close lying and overlapping spectral features within the natural life time broadening restrict applications. We establish how the core level binding energy chemical shift can be picked up experimentally by the additional selectivity through Auger electron photoelectron coincidence spectroscopy (APECS). Coincident measurement of Ni 3p photoemission with different MVV Auger regions from specific decay channels, narrows the 3p core-levels to a width of 1.2 eV, resolves the spin–orbit splitting of 1.6 eV and determines the chemical shift of Ni 3p levels of a Ni(111) single crystal and its oxidized surface layer to 0.6 eV. |
---|