Cargando…

Demonstration of Shor’s factoring algorithm for N [Formula: see text] 21 on IBM quantum processors

We report a proof-of-concept demonstration of a quantum order-finding algorithm for factoring the integer 21. Our demonstration involves the use of a compiled version of the quantum phase estimation routine, and builds upon a previous demonstration. We go beyond this work by using a configuration of...

Descripción completa

Detalles Bibliográficos
Autores principales: Skosana, Unathi, Tame, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8368060/
https://www.ncbi.nlm.nih.gov/pubmed/34400695
http://dx.doi.org/10.1038/s41598-021-95973-w
Descripción
Sumario:We report a proof-of-concept demonstration of a quantum order-finding algorithm for factoring the integer 21. Our demonstration involves the use of a compiled version of the quantum phase estimation routine, and builds upon a previous demonstration. We go beyond this work by using a configuration of approximate Toffoli gates with residual phase shifts, which preserves the functional correctness and allows us to achieve a complete factoring of [Formula: see text] . We implemented the algorithm on IBM quantum processors using only five qubits and successfully verified the presence of entanglement between the control and work register qubits, which is a necessary condition for the algorithm’s speedup in general. The techniques we employ may be useful in carrying out Shor’s algorithm for larger integers, or other algorithms in systems with a limited number of noisy qubits.