Cargando…
MetaCancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data
Predicting metastasis in the early stages means that clinicians have more time to adjust a treatment regimen to target the primary and metastasized cancer. In this regard, several computational approaches are being developed to identify metastasis early. However, most of the approaches focus on chan...
Autores principales: | Albaradei, Somayah, Napolitano, Francesco, Thafar, Maha A., Gojobori, Takashi, Essack, Magbubah, Gao, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8368987/ https://www.ncbi.nlm.nih.gov/pubmed/34429856 http://dx.doi.org/10.1016/j.csbj.2021.08.006 |
Ejemplares similares
-
Machine learning and deep learning methods that use omics data for metastasis prediction
por: Albaradei, Somayah, et al.
Publicado: (2021) -
MetastaSite: Predicting metastasis to different sites using deep learning with gene expression data
por: Albaradei, Somayah, et al.
Publicado: (2022) -
Predicting Bone Metastasis Using Gene Expression-Based Machine Learning Models
por: Albaradei, Somayah, et al.
Publicado: (2021) -
OncoRTT: Predicting novel oncology-related therapeutic targets using BERT embeddings and omics features
por: Thafar, Maha A., et al.
Publicado: (2023) -
Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning
por: Thafar, Maha A., et al.
Publicado: (2022)