Cargando…

Potential Antiaging Effects of DLBS1649, a Centella asiatica Bioactive Extract

PURPOSE: Centella asiatica is a traditional medicinal plant, especially for wound healing and as a neuroprotective agent. DLBS1649 is a bioactive extract from C. asiatica, and was studied to investigate its benefits as an antiaging agent. METHODS: DLBS1649 was administered to HEK293 and 3T3L1 mammal...

Descripción completa

Detalles Bibliográficos
Autores principales: Karsono, Agung H, Tandrasasmita, Olivia M, Berlian, Guntur, Tjandrawinata, Raymond R
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369046/
https://www.ncbi.nlm.nih.gov/pubmed/34413686
http://dx.doi.org/10.2147/JEP.S299547
Descripción
Sumario:PURPOSE: Centella asiatica is a traditional medicinal plant, especially for wound healing and as a neuroprotective agent. DLBS1649 is a bioactive extract from C. asiatica, and was studied to investigate its benefits as an antiaging agent. METHODS: DLBS1649 was administered to HEK293 and 3T3L1 mammalian cells cultured in a time- or dose-dependent manner. Telomere length analysis was performed. TERT, CMYC, SIRT1, SIRT2, and KL expression were observed using reverse-transcription qPCR. Telomerase protein was studied with ELISA, while calorie restriction was observed using Oil Red O. In vivo study was conducted using Drosophila melanogaster with restricted mean survival time as the statistical method of analysis. RESULTS: DLBS1649 50 µg/mL showed an effect in the prevention of telomere shortening by 50% and decrease in telomerase activity by 28% compared to the controls (70% and 40%, respectively) in the HEK293 cell cultures. TERT-, CMYC-, SIRT1-, SIRT2-, and KL-expression degression was also reduced (29%, 9%, 18%, 25%, 9%, and 30%, respectively) compared to the controls (46%, 40%, 56%, 44%, and 46%, respectively) after ten serial passages. Calorie-restriction activity from DLBS1649 50 µg/mL was seen, with lower fat droplet counts being detected in the treated samples (37%) than the controls (28%) in 3T3L1 cells. DLBS1649 2 mg/mL increased restricted mean survival time in male and female D. melanogaster (23.87% [p<0.05] and 12.58%, respectively). CONCLUSION: The results revealed DLBS1649’s potential as an antiaging agent based on telomere-length preservation, decreased expression of aging-related genes, increased calorie restriction in vitro, and mortality reduction in D. melanogaster in vivo.