Cargando…
Automatic Pectoral Muscle Removal and Microcalcification Localization in Digital Mammograms
OBJECTIVES: Breast cancer is the most common cancer diagnosed in women, and microcalcification (MCC) clusters act as an early indicator. Thus, the detection of MCCs plays an important role in diagnosing breast cancer. METHODS: This paper presents a methodology for mammogram preprocessing and MCC det...
Autores principales: | Gómez, Kevin Alejandro Hernández, Echeverry-Correa, Julian D., Gutiérrez, Álvaro Ángel Orozco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369047/ https://www.ncbi.nlm.nih.gov/pubmed/34384204 http://dx.doi.org/10.4258/hir.2021.27.3.222 |
Ejemplares similares
-
Shape-based Automatic Detection of Pectoral Muscle Boundary in Mammograms
por: Chen, Chunxiao, et al.
Publicado: (2015) -
Pectoral muscle identification in mammograms
por: Camilus, K. Santle, et al.
Publicado: (2011) -
Fuzzy technique for microcalcifications clustering in digital mammograms
por: Vivona, Letizia, et al.
Publicado: (2014) -
Automatic Detection of Pectoral Muscle Region for Computer-Aided Diagnosis Using MIAS Mammograms
por: Yoon, Woong Bae, et al.
Publicado: (2016) -
Bayesian Classifier with Simplified Learning Phase for Detecting Microcalcifications in Digital Mammograms
por: Zyout, Imad, et al.
Publicado: (2009)