Cargando…
Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy
OBJECTIVES: In the era of increasing antimicrobial resistance, the need for early identification and prompt treatment of multi-drug-resistant infections is crucial for achieving favorable outcomes in critically ill patients. As traditional microbiological susceptibility testing requires at least 24...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369050/ https://www.ncbi.nlm.nih.gov/pubmed/34384203 http://dx.doi.org/10.4258/hir.2021.27.3.214 |
_version_ | 1783739208106508288 |
---|---|
author | Feretzakis, Georgios Sakagianni, Aikaterini Loupelis, Evangelos Kalles, Dimitris Skarmoutsou, Nikoletta Martsoukou, Maria Christopoulos, Constantinos Lada, Malvina Petropoulou, Stavroula Velentza, Aikaterini Michelidou, Sophia Chatzikyriakou, Rea Dimitrellos, Evangelos |
author_facet | Feretzakis, Georgios Sakagianni, Aikaterini Loupelis, Evangelos Kalles, Dimitris Skarmoutsou, Nikoletta Martsoukou, Maria Christopoulos, Constantinos Lada, Malvina Petropoulou, Stavroula Velentza, Aikaterini Michelidou, Sophia Chatzikyriakou, Rea Dimitrellos, Evangelos |
author_sort | Feretzakis, Georgios |
collection | PubMed |
description | OBJECTIVES: In the era of increasing antimicrobial resistance, the need for early identification and prompt treatment of multi-drug-resistant infections is crucial for achieving favorable outcomes in critically ill patients. As traditional microbiological susceptibility testing requires at least 24 hours, automated machine learning (AutoML) techniques could be used as clinical decision support tools to predict antimicrobial resistance and select appropriate empirical antibiotic treatment. METHODS: An antimicrobial susceptibility dataset of 11,496 instances from 499 patients admitted to the internal medicine wards of a public hospital in Greece was processed by using Microsoft Azure AutoML to evaluate antibiotic susceptibility predictions using patients’ simple demographic characteristics, as well as previous antibiotic susceptibility testing, without any concomitant clinical data. Furthermore, the balanced dataset was also processed using the same procedure. The datasets contained the attributes of sex, age, sample type, Gram stain, 44 antimicrobial substances, and the antibiotic susceptibility results. RESULTS: The stack ensemble technique achieved the best results in the original and balanced dataset with an area under the curve-weighted metric of 0.822 and 0.850, respectively. CONCLUSIONS: Implementation of AutoML for antimicrobial susceptibility data can provide clinicians useful information regarding possible antibiotic resistance and aid them in selecting appropriate empirical antibiotic therapy by taking into consideration the local antimicrobial resistance ecosystem. |
format | Online Article Text |
id | pubmed-8369050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Korean Society of Medical Informatics |
record_format | MEDLINE/PubMed |
spelling | pubmed-83690502021-08-26 Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy Feretzakis, Georgios Sakagianni, Aikaterini Loupelis, Evangelos Kalles, Dimitris Skarmoutsou, Nikoletta Martsoukou, Maria Christopoulos, Constantinos Lada, Malvina Petropoulou, Stavroula Velentza, Aikaterini Michelidou, Sophia Chatzikyriakou, Rea Dimitrellos, Evangelos Healthc Inform Res Original Article OBJECTIVES: In the era of increasing antimicrobial resistance, the need for early identification and prompt treatment of multi-drug-resistant infections is crucial for achieving favorable outcomes in critically ill patients. As traditional microbiological susceptibility testing requires at least 24 hours, automated machine learning (AutoML) techniques could be used as clinical decision support tools to predict antimicrobial resistance and select appropriate empirical antibiotic treatment. METHODS: An antimicrobial susceptibility dataset of 11,496 instances from 499 patients admitted to the internal medicine wards of a public hospital in Greece was processed by using Microsoft Azure AutoML to evaluate antibiotic susceptibility predictions using patients’ simple demographic characteristics, as well as previous antibiotic susceptibility testing, without any concomitant clinical data. Furthermore, the balanced dataset was also processed using the same procedure. The datasets contained the attributes of sex, age, sample type, Gram stain, 44 antimicrobial substances, and the antibiotic susceptibility results. RESULTS: The stack ensemble technique achieved the best results in the original and balanced dataset with an area under the curve-weighted metric of 0.822 and 0.850, respectively. CONCLUSIONS: Implementation of AutoML for antimicrobial susceptibility data can provide clinicians useful information regarding possible antibiotic resistance and aid them in selecting appropriate empirical antibiotic therapy by taking into consideration the local antimicrobial resistance ecosystem. Korean Society of Medical Informatics 2021-07 2021-07-31 /pmc/articles/PMC8369050/ /pubmed/34384203 http://dx.doi.org/10.4258/hir.2021.27.3.214 Text en © 2021 The Korean Society of Medical Informatics https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Feretzakis, Georgios Sakagianni, Aikaterini Loupelis, Evangelos Kalles, Dimitris Skarmoutsou, Nikoletta Martsoukou, Maria Christopoulos, Constantinos Lada, Malvina Petropoulou, Stavroula Velentza, Aikaterini Michelidou, Sophia Chatzikyriakou, Rea Dimitrellos, Evangelos Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy |
title | Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy |
title_full | Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy |
title_fullStr | Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy |
title_full_unstemmed | Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy |
title_short | Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy |
title_sort | machine learning for antibiotic resistance prediction: a prototype using off-the-shelf techniques and entry-level data to guide empiric antimicrobial therapy |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369050/ https://www.ncbi.nlm.nih.gov/pubmed/34384203 http://dx.doi.org/10.4258/hir.2021.27.3.214 |
work_keys_str_mv | AT feretzakisgeorgios machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy AT sakagianniaikaterini machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy AT loupelisevangelos machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy AT kallesdimitris machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy AT skarmoutsounikoletta machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy AT martsoukoumaria machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy AT christopoulosconstantinos machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy AT ladamalvina machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy AT petropouloustavroula machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy AT velentzaaikaterini machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy AT michelidousophia machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy AT chatzikyriakourea machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy AT dimitrellosevangelos machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy |