Cargando…

Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy

OBJECTIVES: In the era of increasing antimicrobial resistance, the need for early identification and prompt treatment of multi-drug-resistant infections is crucial for achieving favorable outcomes in critically ill patients. As traditional microbiological susceptibility testing requires at least 24...

Descripción completa

Detalles Bibliográficos
Autores principales: Feretzakis, Georgios, Sakagianni, Aikaterini, Loupelis, Evangelos, Kalles, Dimitris, Skarmoutsou, Nikoletta, Martsoukou, Maria, Christopoulos, Constantinos, Lada, Malvina, Petropoulou, Stavroula, Velentza, Aikaterini, Michelidou, Sophia, Chatzikyriakou, Rea, Dimitrellos, Evangelos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Medical Informatics 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369050/
https://www.ncbi.nlm.nih.gov/pubmed/34384203
http://dx.doi.org/10.4258/hir.2021.27.3.214
_version_ 1783739208106508288
author Feretzakis, Georgios
Sakagianni, Aikaterini
Loupelis, Evangelos
Kalles, Dimitris
Skarmoutsou, Nikoletta
Martsoukou, Maria
Christopoulos, Constantinos
Lada, Malvina
Petropoulou, Stavroula
Velentza, Aikaterini
Michelidou, Sophia
Chatzikyriakou, Rea
Dimitrellos, Evangelos
author_facet Feretzakis, Georgios
Sakagianni, Aikaterini
Loupelis, Evangelos
Kalles, Dimitris
Skarmoutsou, Nikoletta
Martsoukou, Maria
Christopoulos, Constantinos
Lada, Malvina
Petropoulou, Stavroula
Velentza, Aikaterini
Michelidou, Sophia
Chatzikyriakou, Rea
Dimitrellos, Evangelos
author_sort Feretzakis, Georgios
collection PubMed
description OBJECTIVES: In the era of increasing antimicrobial resistance, the need for early identification and prompt treatment of multi-drug-resistant infections is crucial for achieving favorable outcomes in critically ill patients. As traditional microbiological susceptibility testing requires at least 24 hours, automated machine learning (AutoML) techniques could be used as clinical decision support tools to predict antimicrobial resistance and select appropriate empirical antibiotic treatment. METHODS: An antimicrobial susceptibility dataset of 11,496 instances from 499 patients admitted to the internal medicine wards of a public hospital in Greece was processed by using Microsoft Azure AutoML to evaluate antibiotic susceptibility predictions using patients’ simple demographic characteristics, as well as previous antibiotic susceptibility testing, without any concomitant clinical data. Furthermore, the balanced dataset was also processed using the same procedure. The datasets contained the attributes of sex, age, sample type, Gram stain, 44 antimicrobial substances, and the antibiotic susceptibility results. RESULTS: The stack ensemble technique achieved the best results in the original and balanced dataset with an area under the curve-weighted metric of 0.822 and 0.850, respectively. CONCLUSIONS: Implementation of AutoML for antimicrobial susceptibility data can provide clinicians useful information regarding possible antibiotic resistance and aid them in selecting appropriate empirical antibiotic therapy by taking into consideration the local antimicrobial resistance ecosystem.
format Online
Article
Text
id pubmed-8369050
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Korean Society of Medical Informatics
record_format MEDLINE/PubMed
spelling pubmed-83690502021-08-26 Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy Feretzakis, Georgios Sakagianni, Aikaterini Loupelis, Evangelos Kalles, Dimitris Skarmoutsou, Nikoletta Martsoukou, Maria Christopoulos, Constantinos Lada, Malvina Petropoulou, Stavroula Velentza, Aikaterini Michelidou, Sophia Chatzikyriakou, Rea Dimitrellos, Evangelos Healthc Inform Res Original Article OBJECTIVES: In the era of increasing antimicrobial resistance, the need for early identification and prompt treatment of multi-drug-resistant infections is crucial for achieving favorable outcomes in critically ill patients. As traditional microbiological susceptibility testing requires at least 24 hours, automated machine learning (AutoML) techniques could be used as clinical decision support tools to predict antimicrobial resistance and select appropriate empirical antibiotic treatment. METHODS: An antimicrobial susceptibility dataset of 11,496 instances from 499 patients admitted to the internal medicine wards of a public hospital in Greece was processed by using Microsoft Azure AutoML to evaluate antibiotic susceptibility predictions using patients’ simple demographic characteristics, as well as previous antibiotic susceptibility testing, without any concomitant clinical data. Furthermore, the balanced dataset was also processed using the same procedure. The datasets contained the attributes of sex, age, sample type, Gram stain, 44 antimicrobial substances, and the antibiotic susceptibility results. RESULTS: The stack ensemble technique achieved the best results in the original and balanced dataset with an area under the curve-weighted metric of 0.822 and 0.850, respectively. CONCLUSIONS: Implementation of AutoML for antimicrobial susceptibility data can provide clinicians useful information regarding possible antibiotic resistance and aid them in selecting appropriate empirical antibiotic therapy by taking into consideration the local antimicrobial resistance ecosystem. Korean Society of Medical Informatics 2021-07 2021-07-31 /pmc/articles/PMC8369050/ /pubmed/34384203 http://dx.doi.org/10.4258/hir.2021.27.3.214 Text en © 2021 The Korean Society of Medical Informatics https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Feretzakis, Georgios
Sakagianni, Aikaterini
Loupelis, Evangelos
Kalles, Dimitris
Skarmoutsou, Nikoletta
Martsoukou, Maria
Christopoulos, Constantinos
Lada, Malvina
Petropoulou, Stavroula
Velentza, Aikaterini
Michelidou, Sophia
Chatzikyriakou, Rea
Dimitrellos, Evangelos
Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy
title Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy
title_full Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy
title_fullStr Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy
title_full_unstemmed Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy
title_short Machine Learning for Antibiotic Resistance Prediction: A Prototype Using Off-the-Shelf Techniques and Entry-Level Data to Guide Empiric Antimicrobial Therapy
title_sort machine learning for antibiotic resistance prediction: a prototype using off-the-shelf techniques and entry-level data to guide empiric antimicrobial therapy
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369050/
https://www.ncbi.nlm.nih.gov/pubmed/34384203
http://dx.doi.org/10.4258/hir.2021.27.3.214
work_keys_str_mv AT feretzakisgeorgios machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy
AT sakagianniaikaterini machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy
AT loupelisevangelos machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy
AT kallesdimitris machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy
AT skarmoutsounikoletta machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy
AT martsoukoumaria machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy
AT christopoulosconstantinos machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy
AT ladamalvina machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy
AT petropouloustavroula machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy
AT velentzaaikaterini machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy
AT michelidousophia machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy
AT chatzikyriakourea machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy
AT dimitrellosevangelos machinelearningforantibioticresistancepredictionaprototypeusingofftheshelftechniquesandentryleveldatatoguideempiricantimicrobialtherapy