Cargando…

Comparing Ultraconserved Elements and Exons for Phylogenomic Analyses of Middle American Cichlids: When Data Agree to Disagree

Choosing among types of genomic markers to be used in a phylogenomic study can have a major influence on the cost, design, and results of a study. Yet few attempts have been made to compare categories of next-generation sequence markers limiting our ability to compare the suitability of these differ...

Descripción completa

Detalles Bibliográficos
Autores principales: Alda, Fernando, Ludt, William B, Elías, Diego J, McMahan, Caleb D, Chakrabarty, Prosanta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369075/
https://www.ncbi.nlm.nih.gov/pubmed/34272856
http://dx.doi.org/10.1093/gbe/evab161
Descripción
Sumario:Choosing among types of genomic markers to be used in a phylogenomic study can have a major influence on the cost, design, and results of a study. Yet few attempts have been made to compare categories of next-generation sequence markers limiting our ability to compare the suitability of these different genomic fragment types. Here, we explore properties of different genomic markers to find if they vary in the accuracy of component phylogenetic trees and to clarify the causes of conflict obtained from different data sets or inference methods. As a test case, we explore the causes of discordance between phylogenetic hypotheses obtained using a novel data set of ultraconserved elements (UCEs) and a recently published exon data set of the cichlid tribe Heroini. Resolving relationships among heroine cichlids has historically been difficult, and the processes of colonization and diversification in Middle America and the Greater Antilles are not yet well understood. Despite differences in informativeness and levels of gene tree discordance between UCEs and exons, the resulting phylogenomic hypotheses generally agree on most relationships. The independent data sets disagreed in areas with low phylogenetic signal that were overwhelmed by incomplete lineage sorting and nonphylogenetic signals. For UCEs, high levels of incomplete lineage sorting were found to be the major cause of gene tree discordance, whereas, for exons, nonphylogenetic signal is most likely caused by a reduced number of highly informative loci. This paucity of informative loci in exons might be due to heterogeneous substitution rates that are problematic to model (i.e., computationally restrictive) resulting in systematic errors that UCEs (being less informative individually but more uniform) are less prone to. These results generally demonstrate the robustness of phylogenomic methods to accommodate genomic markers with different biological and phylogenetic properties. However, we identify common and unique pitfalls of different categories of genomic fragments when inferring enigmatic phylogenetic relationships.