Cargando…
Accurate Identification of Antioxidant Proteins Based on a Combination of Machine Learning Techniques and Hidden Markov Model Profiles
Antioxidant proteins (AOPs) play important roles in the management and prevention of several human diseases due to their ability to neutralize excess free radicals. However, the identification of AOPs by using wet-lab experimental techniques is often time-consuming and expensive. In this study, we p...
Autores principales: | Shen, Zhehan, Liu, Taigang, Xu, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369162/ https://www.ncbi.nlm.nih.gov/pubmed/34413898 http://dx.doi.org/10.1155/2021/5770981 |
Ejemplares similares
-
Protein Binding Site Prediction by Combining Hidden Markov Support Vector Machine and Profile-Based Propensities
por: Liu, Bin, et al.
Publicado: (2014) -
Riboswitch Detection Using Profile Hidden Markov Models
por: Singh, Payal, et al.
Publicado: (2009) -
Hierarchical Hidden Markov models enable accurate and diverse detection of antimicrobial resistance sequences
por: Lakin, Steven M., et al.
Publicado: (2019) -
Inference in Hidden Markov Models
por: Cappe, Olivier
Publicado: (2005) -
Hidden Markov Modeling with HMMTeacher
por: Fuentes-Beals, Camilo, et al.
Publicado: (2022)