Cargando…

Dynamic Patterns of N6-Methyladenosine Profiles of Messenger RNA Correlated with the Cardiomyocyte Regenerability during the Early Heart Development in Mice

N6-Methyladenosine (m6A) plays important roles in regulating mRNA processing. Despite rapid progress in this field, little is known about the role and mechanism of m6A modification in myocardial development and cardiomyocyte regeneration. Existing studies have shown that the heart tissues of newborn...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yuhui, Shen, Siman, Cai, Yin, Zeng, Kejun, Liu, Keyu, Li, Simeng, Zeng, Lanfen, Chen, Linming, Tang, Jing, Hu, Zhe, Xia, Zhengyuan, Zhang, Liangqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369182/
https://www.ncbi.nlm.nih.gov/pubmed/34413927
http://dx.doi.org/10.1155/2021/5537804
_version_ 1783739238322274304
author Yang, Yuhui
Shen, Siman
Cai, Yin
Zeng, Kejun
Liu, Keyu
Li, Simeng
Zeng, Lanfen
Chen, Linming
Tang, Jing
Hu, Zhe
Xia, Zhengyuan
Zhang, Liangqing
author_facet Yang, Yuhui
Shen, Siman
Cai, Yin
Zeng, Kejun
Liu, Keyu
Li, Simeng
Zeng, Lanfen
Chen, Linming
Tang, Jing
Hu, Zhe
Xia, Zhengyuan
Zhang, Liangqing
author_sort Yang, Yuhui
collection PubMed
description N6-Methyladenosine (m6A) plays important roles in regulating mRNA processing. Despite rapid progress in this field, little is known about the role and mechanism of m6A modification in myocardial development and cardiomyocyte regeneration. Existing studies have shown that the heart tissues of newborn mice have the capability of proliferation and regeneration, but its mechanism, particularly its relation to m6A methylation, remains unknown. Methods. To systematically profile the mRNA m6A modification pattern in the heart tissues of mice at different developmental stages, we jointly performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of heart tissues of mice, respectively, aged 1 day old, 7 days old, and 28 days old. Results. We identified the linkages and association between differentially expressed mRNA transcripts and hyper or hypomethylated m6A peaks in C57BL/6J mice at different heart developmental stages. Results showed that the amount of m6A peaks and the level of m6A modification were the lowest in the heart of mice at 1 day old. By contrast, heart tissues from 7-day-old mice tended to possess the most m6A peaks and the highest global m6A level. However, the m6A characteristics of myocardial tissue changed little after 7 days old as compared to that of 1 day old. Specifically, we found 1269 downmethylated genes of 1434 methylated genes in 7-day-old mouse heart tissues as compared to those in 1-day-old mice. Hypermethylation of some specific genes may correlate with the heart's strong proliferative and regenerative capability at the first day after birth. In terms of m6A density, the tendency shifted from coding sequences (CDS) to 3′-untranslated regions (3′UTR) and stop codon with the progression of heart development. In addition, some genes demonstrated remarkable changes both in methylation and expression, like kiss1, plekha6, and megf6, which may play important roles in proliferation. Furthermore, signaling pathways highly related to proliferation such as “Wnt signaling pathway,” “ECM-receptor interaction,” and “cardiac chamber formation” were significantly enriched in 1-day-old methylated genes. Conclusions. Our results reveal a pattern that different m6A modifications are distributed in C57BL/6J heart tissue at different developmental stages, which provides new insights into a novel function of m6A methylation of mRNA in myocardial development and regeneration.
format Online
Article
Text
id pubmed-8369182
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-83691822021-08-18 Dynamic Patterns of N6-Methyladenosine Profiles of Messenger RNA Correlated with the Cardiomyocyte Regenerability during the Early Heart Development in Mice Yang, Yuhui Shen, Siman Cai, Yin Zeng, Kejun Liu, Keyu Li, Simeng Zeng, Lanfen Chen, Linming Tang, Jing Hu, Zhe Xia, Zhengyuan Zhang, Liangqing Oxid Med Cell Longev Research Article N6-Methyladenosine (m6A) plays important roles in regulating mRNA processing. Despite rapid progress in this field, little is known about the role and mechanism of m6A modification in myocardial development and cardiomyocyte regeneration. Existing studies have shown that the heart tissues of newborn mice have the capability of proliferation and regeneration, but its mechanism, particularly its relation to m6A methylation, remains unknown. Methods. To systematically profile the mRNA m6A modification pattern in the heart tissues of mice at different developmental stages, we jointly performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of heart tissues of mice, respectively, aged 1 day old, 7 days old, and 28 days old. Results. We identified the linkages and association between differentially expressed mRNA transcripts and hyper or hypomethylated m6A peaks in C57BL/6J mice at different heart developmental stages. Results showed that the amount of m6A peaks and the level of m6A modification were the lowest in the heart of mice at 1 day old. By contrast, heart tissues from 7-day-old mice tended to possess the most m6A peaks and the highest global m6A level. However, the m6A characteristics of myocardial tissue changed little after 7 days old as compared to that of 1 day old. Specifically, we found 1269 downmethylated genes of 1434 methylated genes in 7-day-old mouse heart tissues as compared to those in 1-day-old mice. Hypermethylation of some specific genes may correlate with the heart's strong proliferative and regenerative capability at the first day after birth. In terms of m6A density, the tendency shifted from coding sequences (CDS) to 3′-untranslated regions (3′UTR) and stop codon with the progression of heart development. In addition, some genes demonstrated remarkable changes both in methylation and expression, like kiss1, plekha6, and megf6, which may play important roles in proliferation. Furthermore, signaling pathways highly related to proliferation such as “Wnt signaling pathway,” “ECM-receptor interaction,” and “cardiac chamber formation” were significantly enriched in 1-day-old methylated genes. Conclusions. Our results reveal a pattern that different m6A modifications are distributed in C57BL/6J heart tissue at different developmental stages, which provides new insights into a novel function of m6A methylation of mRNA in myocardial development and regeneration. Hindawi 2021-08-06 /pmc/articles/PMC8369182/ /pubmed/34413927 http://dx.doi.org/10.1155/2021/5537804 Text en Copyright © 2021 Yuhui Yang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Yang, Yuhui
Shen, Siman
Cai, Yin
Zeng, Kejun
Liu, Keyu
Li, Simeng
Zeng, Lanfen
Chen, Linming
Tang, Jing
Hu, Zhe
Xia, Zhengyuan
Zhang, Liangqing
Dynamic Patterns of N6-Methyladenosine Profiles of Messenger RNA Correlated with the Cardiomyocyte Regenerability during the Early Heart Development in Mice
title Dynamic Patterns of N6-Methyladenosine Profiles of Messenger RNA Correlated with the Cardiomyocyte Regenerability during the Early Heart Development in Mice
title_full Dynamic Patterns of N6-Methyladenosine Profiles of Messenger RNA Correlated with the Cardiomyocyte Regenerability during the Early Heart Development in Mice
title_fullStr Dynamic Patterns of N6-Methyladenosine Profiles of Messenger RNA Correlated with the Cardiomyocyte Regenerability during the Early Heart Development in Mice
title_full_unstemmed Dynamic Patterns of N6-Methyladenosine Profiles of Messenger RNA Correlated with the Cardiomyocyte Regenerability during the Early Heart Development in Mice
title_short Dynamic Patterns of N6-Methyladenosine Profiles of Messenger RNA Correlated with the Cardiomyocyte Regenerability during the Early Heart Development in Mice
title_sort dynamic patterns of n6-methyladenosine profiles of messenger rna correlated with the cardiomyocyte regenerability during the early heart development in mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369182/
https://www.ncbi.nlm.nih.gov/pubmed/34413927
http://dx.doi.org/10.1155/2021/5537804
work_keys_str_mv AT yangyuhui dynamicpatternsofn6methyladenosineprofilesofmessengerrnacorrelatedwiththecardiomyocyteregenerabilityduringtheearlyheartdevelopmentinmice
AT shensiman dynamicpatternsofn6methyladenosineprofilesofmessengerrnacorrelatedwiththecardiomyocyteregenerabilityduringtheearlyheartdevelopmentinmice
AT caiyin dynamicpatternsofn6methyladenosineprofilesofmessengerrnacorrelatedwiththecardiomyocyteregenerabilityduringtheearlyheartdevelopmentinmice
AT zengkejun dynamicpatternsofn6methyladenosineprofilesofmessengerrnacorrelatedwiththecardiomyocyteregenerabilityduringtheearlyheartdevelopmentinmice
AT liukeyu dynamicpatternsofn6methyladenosineprofilesofmessengerrnacorrelatedwiththecardiomyocyteregenerabilityduringtheearlyheartdevelopmentinmice
AT lisimeng dynamicpatternsofn6methyladenosineprofilesofmessengerrnacorrelatedwiththecardiomyocyteregenerabilityduringtheearlyheartdevelopmentinmice
AT zenglanfen dynamicpatternsofn6methyladenosineprofilesofmessengerrnacorrelatedwiththecardiomyocyteregenerabilityduringtheearlyheartdevelopmentinmice
AT chenlinming dynamicpatternsofn6methyladenosineprofilesofmessengerrnacorrelatedwiththecardiomyocyteregenerabilityduringtheearlyheartdevelopmentinmice
AT tangjing dynamicpatternsofn6methyladenosineprofilesofmessengerrnacorrelatedwiththecardiomyocyteregenerabilityduringtheearlyheartdevelopmentinmice
AT huzhe dynamicpatternsofn6methyladenosineprofilesofmessengerrnacorrelatedwiththecardiomyocyteregenerabilityduringtheearlyheartdevelopmentinmice
AT xiazhengyuan dynamicpatternsofn6methyladenosineprofilesofmessengerrnacorrelatedwiththecardiomyocyteregenerabilityduringtheearlyheartdevelopmentinmice
AT zhangliangqing dynamicpatternsofn6methyladenosineprofilesofmessengerrnacorrelatedwiththecardiomyocyteregenerabilityduringtheearlyheartdevelopmentinmice