Cargando…
HeTDR: Drug repositioning based on heterogeneous networks and text mining
Using existing knowledge to carry out drug-disease associations prediction is a vital method for drug repositioning. However, effectively fusing the biomedical text and biological network information is one of the great challenges for most current drug repositioning methods. In this study, we propos...
Autores principales: | Jin, Shuting, Niu, Zhangming, Jiang, Changzhi, Huang, Wei, Xia, Feng, Jin, Xurui, Liu, Xiangrong, Zeng, Xiangxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369234/ https://www.ncbi.nlm.nih.gov/pubmed/34430926 http://dx.doi.org/10.1016/j.patter.2021.100307 |
Ejemplares similares
-
Pharmacophoric-constrained heterogeneous graph transformer model for molecular property prediction
por: Jiang, Yinghui, et al.
Publicado: (2023) -
Pre‐Training of Equivariant Graph Matching Networks with Conformation Flexibility for Drug Binding
por: Wu, Fang, et al.
Publicado: (2022) -
CAST 3He TDR, Review Committee's Report
por: Zioutas, Konstantin, et al.
Publicado: (2006) -
Adopting Text Mining on Rehabilitation Therapy Repositioning for Stroke
por: Meng, Guilin, et al.
Publicado: (2019) -
An extensive benchmark study on biomedical text generation and mining with ChatGPT
por: Chen, Qijie, et al.
Publicado: (2023)