Cargando…
Effect of Post-mortem Interval and Perfusion on the Biophysical Properties of ex vivo Liver Tissue Investigated Longitudinally by MRE and DWI
Structural changes of soft tissues on the cellular level can be characterized by histopathology, but not longitudinally in the same tissue. Alterations of cellular structures and tissue matrix are associated with changes in biophysical properties which can be monitored longitudinally by quantitative...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369239/ https://www.ncbi.nlm.nih.gov/pubmed/34413787 http://dx.doi.org/10.3389/fphys.2021.696304 |
_version_ | 1783739251362365440 |
---|---|
author | Garczyńska, Karolina Tzschätzsch, Heiko Assili, Sanam Kühl, Anja A. Häckel, Akvile Schellenberger, Eyk Berndt, Nikolaus Holzhütter, Hermann-Georg Braun, Jürgen Sack, Ingolf Guo, Jing |
author_facet | Garczyńska, Karolina Tzschätzsch, Heiko Assili, Sanam Kühl, Anja A. Häckel, Akvile Schellenberger, Eyk Berndt, Nikolaus Holzhütter, Hermann-Georg Braun, Jürgen Sack, Ingolf Guo, Jing |
author_sort | Garczyńska, Karolina |
collection | PubMed |
description | Structural changes of soft tissues on the cellular level can be characterized by histopathology, but not longitudinally in the same tissue. Alterations of cellular structures and tissue matrix are associated with changes in biophysical properties which can be monitored longitudinally by quantitative diffusion-weighted imaging (DWI) and magnetic resonance elastography (MRE). In this work, DWI and MRE examinations were performed in a 0.5-Tesla compact scanner to investigate longitudinal changes in water diffusivity, stiffness and viscosity of ex-vivo rat livers for up to 20 h post-mortem (pm). The effect of blood on biophysical parameters was examined in 13 non-perfused livers (containing blood, NPLs) and 14 perfused livers (blood washed out, PLs). Changes in cell shape, cell packing and cell wall integrity were characterized histologically. In all acquisitions, NPLs presented with higher shear-wave speed (c), higher shear-wave penetration rate (a) and smaller apparent-diffusion-coefficients (ADCs) than PL. Time-resolved analysis revealed three distinct phases: (i) an initial phase (up to 2 h pm) with markedly increased c and a and reduced ADCs; (ii) an extended phase with relatively stable values; and (iii) a degradation phase characterized by significant increases in a (10 h pm in NPLs and PLs) and ADCs (10 h pm in NPLs, 13 h pm in PLs). Histology revealed changes in cell shape and packing along with decreased cell wall integrity, indicating tissue degradation in NPLs and PLs 10 h pm. Taken together, our results demonstrate that the biophysical properties of fresh liver tissue rapidly change within 2 h pm, which seems to be an effect of both cytotoxic edema and vascular blood content. Several hours later, disruption of cell walls resulted in higher water diffusivity and wave penetration. These results reveal the individual contributions of vascular components and cellular integrity to liver elastography and provide a biophysical, imaging-based fingerprint of liver tissue degradation. |
format | Online Article Text |
id | pubmed-8369239 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83692392021-08-18 Effect of Post-mortem Interval and Perfusion on the Biophysical Properties of ex vivo Liver Tissue Investigated Longitudinally by MRE and DWI Garczyńska, Karolina Tzschätzsch, Heiko Assili, Sanam Kühl, Anja A. Häckel, Akvile Schellenberger, Eyk Berndt, Nikolaus Holzhütter, Hermann-Georg Braun, Jürgen Sack, Ingolf Guo, Jing Front Physiol Physiology Structural changes of soft tissues on the cellular level can be characterized by histopathology, but not longitudinally in the same tissue. Alterations of cellular structures and tissue matrix are associated with changes in biophysical properties which can be monitored longitudinally by quantitative diffusion-weighted imaging (DWI) and magnetic resonance elastography (MRE). In this work, DWI and MRE examinations were performed in a 0.5-Tesla compact scanner to investigate longitudinal changes in water diffusivity, stiffness and viscosity of ex-vivo rat livers for up to 20 h post-mortem (pm). The effect of blood on biophysical parameters was examined in 13 non-perfused livers (containing blood, NPLs) and 14 perfused livers (blood washed out, PLs). Changes in cell shape, cell packing and cell wall integrity were characterized histologically. In all acquisitions, NPLs presented with higher shear-wave speed (c), higher shear-wave penetration rate (a) and smaller apparent-diffusion-coefficients (ADCs) than PL. Time-resolved analysis revealed three distinct phases: (i) an initial phase (up to 2 h pm) with markedly increased c and a and reduced ADCs; (ii) an extended phase with relatively stable values; and (iii) a degradation phase characterized by significant increases in a (10 h pm in NPLs and PLs) and ADCs (10 h pm in NPLs, 13 h pm in PLs). Histology revealed changes in cell shape and packing along with decreased cell wall integrity, indicating tissue degradation in NPLs and PLs 10 h pm. Taken together, our results demonstrate that the biophysical properties of fresh liver tissue rapidly change within 2 h pm, which seems to be an effect of both cytotoxic edema and vascular blood content. Several hours later, disruption of cell walls resulted in higher water diffusivity and wave penetration. These results reveal the individual contributions of vascular components and cellular integrity to liver elastography and provide a biophysical, imaging-based fingerprint of liver tissue degradation. Frontiers Media S.A. 2021-08-03 /pmc/articles/PMC8369239/ /pubmed/34413787 http://dx.doi.org/10.3389/fphys.2021.696304 Text en Copyright © 2021 Garczyńska, Tzschätzsch, Assili, Kühl, Häckel, Schellenberger, Berndt, Holzhütter, Braun, Sack and Guo. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Garczyńska, Karolina Tzschätzsch, Heiko Assili, Sanam Kühl, Anja A. Häckel, Akvile Schellenberger, Eyk Berndt, Nikolaus Holzhütter, Hermann-Georg Braun, Jürgen Sack, Ingolf Guo, Jing Effect of Post-mortem Interval and Perfusion on the Biophysical Properties of ex vivo Liver Tissue Investigated Longitudinally by MRE and DWI |
title | Effect of Post-mortem Interval and Perfusion on the Biophysical Properties of ex vivo Liver Tissue Investigated Longitudinally by MRE and DWI |
title_full | Effect of Post-mortem Interval and Perfusion on the Biophysical Properties of ex vivo Liver Tissue Investigated Longitudinally by MRE and DWI |
title_fullStr | Effect of Post-mortem Interval and Perfusion on the Biophysical Properties of ex vivo Liver Tissue Investigated Longitudinally by MRE and DWI |
title_full_unstemmed | Effect of Post-mortem Interval and Perfusion on the Biophysical Properties of ex vivo Liver Tissue Investigated Longitudinally by MRE and DWI |
title_short | Effect of Post-mortem Interval and Perfusion on the Biophysical Properties of ex vivo Liver Tissue Investigated Longitudinally by MRE and DWI |
title_sort | effect of post-mortem interval and perfusion on the biophysical properties of ex vivo liver tissue investigated longitudinally by mre and dwi |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369239/ https://www.ncbi.nlm.nih.gov/pubmed/34413787 http://dx.doi.org/10.3389/fphys.2021.696304 |
work_keys_str_mv | AT garczynskakarolina effectofpostmortemintervalandperfusiononthebiophysicalpropertiesofexvivolivertissueinvestigatedlongitudinallybymreanddwi AT tzschatzschheiko effectofpostmortemintervalandperfusiononthebiophysicalpropertiesofexvivolivertissueinvestigatedlongitudinallybymreanddwi AT assilisanam effectofpostmortemintervalandperfusiononthebiophysicalpropertiesofexvivolivertissueinvestigatedlongitudinallybymreanddwi AT kuhlanjaa effectofpostmortemintervalandperfusiononthebiophysicalpropertiesofexvivolivertissueinvestigatedlongitudinallybymreanddwi AT hackelakvile effectofpostmortemintervalandperfusiononthebiophysicalpropertiesofexvivolivertissueinvestigatedlongitudinallybymreanddwi AT schellenbergereyk effectofpostmortemintervalandperfusiononthebiophysicalpropertiesofexvivolivertissueinvestigatedlongitudinallybymreanddwi AT berndtnikolaus effectofpostmortemintervalandperfusiononthebiophysicalpropertiesofexvivolivertissueinvestigatedlongitudinallybymreanddwi AT holzhutterhermanngeorg effectofpostmortemintervalandperfusiononthebiophysicalpropertiesofexvivolivertissueinvestigatedlongitudinallybymreanddwi AT braunjurgen effectofpostmortemintervalandperfusiononthebiophysicalpropertiesofexvivolivertissueinvestigatedlongitudinallybymreanddwi AT sackingolf effectofpostmortemintervalandperfusiononthebiophysicalpropertiesofexvivolivertissueinvestigatedlongitudinallybymreanddwi AT guojing effectofpostmortemintervalandperfusiononthebiophysicalpropertiesofexvivolivertissueinvestigatedlongitudinallybymreanddwi |