Cargando…
EmptyNN: A neural network based on positive and unlabeled learning to remove cell-free droplets and recover lost cells in scRNA-seq data
Droplet-based single-cell RNA sequencing (scRNA-seq) has significantly increased the number of cells profiled per experiment and revolutionized the study of individual transcriptomes. However, to maximize the biological signal, robust computational methods are needed to distinguish cell-free from ce...
Autores principales: | Yan, Fangfang, Zhao, Zhongming, Simon, Lukas M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369248/ https://www.ncbi.nlm.nih.gov/pubmed/34430929 http://dx.doi.org/10.1016/j.patter.2021.100311 |
Ejemplares similares
-
Preprocessing choices affect RNA velocity results for droplet scRNA-seq data
por: Soneson, Charlotte, et al.
Publicado: (2021) -
ScRNA-seq and ST-seq in liver research
por: He, Jia, et al.
Publicado: (2023) -
The challenges and opportunities of scRNA-seq in COVID-19 research and clinical translation
por: Liu, Wendao, et al.
Publicado: (2022) -
scRNASequest: an ecosystem of scRNA-seq analysis, visualization, and publishing
por: Li, Kejie, et al.
Publicado: (2023) -
Cell lineage inference from SNP and scRNA-Seq data
por: Ding, Jun, et al.
Publicado: (2019)