Cargando…
Bias-variance decomposition of absolute errors for diagnosing regression models of continuous data
Bias-variance decomposition (BVD) is a powerful tool for understanding and improving data-driven models. It reveals sources of estimation errors. Existing literature has defined BVD for squared error but not absolute error, while absolute error is the more natural error metric and has shown advantag...
Autor principal: | Gao, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369249/ https://www.ncbi.nlm.nih.gov/pubmed/34430928 http://dx.doi.org/10.1016/j.patter.2021.100309 |
Ejemplares similares
-
Decomposition of the mean absolute error (MAE) into systematic and unsystematic components
por: Robeson, Scott M., et al.
Publicado: (2023) -
Variance decomposition networks
por: Chan-Lau, Jorge A
Publicado: (2017) -
Bias-Variance Trade-Off in Continuous Test
Norming
por: Voncken, Lieke, et al.
Publicado: (2020) -
Variance Decomposition Using an IRT Measurement Model
por: van den Berg, Stéphanie M., et al.
Publicado: (2007) -
Analysis of variance, design, and regression: linear modeling for unbalanced data
por: Christensen, Ronald
Publicado: (2015)