Cargando…
Amplitude Integrated Electroencephalography and Continuous Electroencephalography Monitoring Is Crucial in High-Risk Infants and Their Findings Correlate With Neurodevelopmental Outcomes
Background: To evaluate seizure diagnosis in sick infants in the neonatal intensive care unit (NICU) based on electroencephalography (EEG) monitoring combined with amplitude integrated electroencephalography (aEEG). Methods: We retrospectively reviewed EEG and aEEG findings and determined their corr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369262/ https://www.ncbi.nlm.nih.gov/pubmed/34414144 http://dx.doi.org/10.3389/fped.2021.691764 |
Sumario: | Background: To evaluate seizure diagnosis in sick infants in the neonatal intensive care unit (NICU) based on electroencephalography (EEG) monitoring combined with amplitude integrated electroencephalography (aEEG). Methods: We retrospectively reviewed EEG and aEEG findings and determined their correlations with neurodevelopmental outcomes at the age of >1 year in 65 patients with diagnosed seizures, encephalopathy, or both. Results: Seizure identification rate was 43.1%. The rate in nonstructural groups (hypocalcemic, hypoglycemic, and genetic seizures) was 71.4%, which was higher (p < 0.05) than the rate of 35.3% of structural brain lesion group [hypoxic–ischemic encephalopathy (HIE) and congenital brain structural malformation]. The aEEG background correlating with neurodevelopmental outcomes had 70.0% positive prediction value (PPV), 65.5%% negative prediction value (NPV), 67.7% specificity, and 67.9% sensitivity (p < 0.005). The aEEG background strongly (PPV, 93.8%; p < 0.005) correlated with the outcomes in HIE. For genetic seizures, the detected rate was high. The ictal recordings for the nonstructural seizures revealed downflected on the aEEG background initially, which differed from the structural lesion. Conclusions: EEG monitoring combined with aEEG can detect seizures, facilitating early treatment. EEG changes during seizures could exhibit delta-theta waves with or without clinical seizures in patients with brain lesions. In non-structural etiologies (hypocalcemic and KCNQ2 seizures), aEEG initially exhibited lower background during seizures that could aid in differentiating these EEG changes from those of other etiologies. The aEEG background was correlated with neurodevelopmental outcome and exhibited high PPV but not NPV in neonatal HIE. |
---|