Cargando…
Structural break-aware pairs trading strategy using deep reinforcement learning
Pairs trading is an effective statistical arbitrage strategy considering the spread of paired stocks in a stable cointegration relationship. Nevertheless, rapid market changes may break the relationship (namely structural break), which further leads to tremendous loss in intraday trading. In this pa...
Autores principales: | Lu, Jing-You, Lai, Hsu-Chao, Shih, Wen-Yueh, Chen, Yi-Feng, Huang, Shen-Hang, Chang, Hao-Han, Wang, Jun-Zhe, Huang, Jiun-Long, Dai, Tian-Shyr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369334/ https://www.ncbi.nlm.nih.gov/pubmed/34421218 http://dx.doi.org/10.1007/s11227-021-04013-x |
Ejemplares similares
-
End-to-End Autonomous Navigation Based on Deep Reinforcement Learning with a Survival Penalty Function
por: Jeng, Shyr-Long, et al.
Publicado: (2023) -
An Intelligent Model for Pairs Trading Using Genetic Algorithms
por: Huang, Chien-Feng, et al.
Publicado: (2015) -
Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery
por: Dai, Qing, et al.
Publicado: (2020) -
Deep reinforcement learning stock market trading, utilizing a CNN with candlestick images
por: Brim, Andrew, et al.
Publicado: (2022) -
Deep Reinforcement Learning-Based Trading Strategy for Load Aggregators on Price-Responsive Demand
por: Yang, Guang, et al.
Publicado: (2022)