Cargando…
Foodborne Disease Risk Prediction Using Multigraph Structural Long Short-term Memory Networks: Algorithm Design and Validation Study
BACKGROUND: Foodborne disease is a common threat to human health worldwide, leading to millions of deaths every year. Thus, the accurate prediction foodborne disease risk is very urgent and of great importance for public health management. OBJECTIVE: We aimed to design a spatial–temporal risk predic...
Autores principales: | Du, Yi, Wang, Hanxue, Cui, Wenjuan, Zhu, Hengshu, Guo, Yunchang, Dharejo, Fayaz Ali, Zhou, Yuanchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369373/ https://www.ncbi.nlm.nih.gov/pubmed/34338648 http://dx.doi.org/10.2196/29433 |
Ejemplares similares
-
Machine Learning Prediction of Foodborne Disease Pathogens: Algorithm Development and Validation Study
por: Wang, Hanxue, et al.
Publicado: (2021) -
High-Efficiency Machine Learning Method for Identifying Foodborne Disease Outbreaks and Confounding Factors
por: Zhang, Peng, et al.
Publicado: (2021) -
Goodness of fit tests for random multigraph models
por: Shafie, Termeh
Publicado: (2022) -
A Multigraph-Based Representation of Hi-C Data
por: Makai, Diána, et al.
Publicado: (2022) -
A unified spatial multigraph analysis for public transport performance
por: Wang, Yaoli, et al.
Publicado: (2020)