Cargando…
Creating efficiencies in the extraction of data from randomized trials: a prospective evaluation of a machine learning and text mining tool
BACKGROUND: Machine learning tools that semi-automate data extraction may create efficiencies in systematic review production. We evaluated a machine learning and text mining tool’s ability to (a) automatically extract data elements from randomized trials, and (b) save time compared with manual extr...
Autores principales: | Gates, Allison, Gates, Michelle, Sim, Shannon, Elliott, Sarah A., Pillay, Jennifer, Hartling, Lisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369614/ https://www.ncbi.nlm.nih.gov/pubmed/34399684 http://dx.doi.org/10.1186/s12874-021-01354-2 |
Ejemplares similares
-
LOCATE: a prospective evaluation of the value of Leveraging Ongoing Citation Acquisition Techniques for living Evidence syntheses
por: Gates, Michelle, et al.
Publicado: (2021) -
Performance and usability of machine learning for screening in systematic reviews: a comparative evaluation of three tools
por: Gates, Allison, et al.
Publicado: (2019) -
Technology-assisted title and abstract screening for systematic reviews: a retrospective evaluation of the Abstrackr machine learning tool
por: Gates, Allison, et al.
Publicado: (2018) -
Decoding semi-automated title-abstract screening: findings from a convenience sample of reviews
por: Gates, Allison, et al.
Publicado: (2020) -
The semi-automation of title and abstract screening: a retrospective exploration of ways to leverage Abstrackr’s relevance predictions in systematic and rapid reviews
por: Gates, Allison, et al.
Publicado: (2020)