Cargando…
CoCoA-diff: counterfactual inference for single-cell gene expression analysis
Finding a causal gene is a fundamental problem in genomic medicine. We present a causal inference framework, CoCoA-diff, that prioritizes disease genes by adjusting confounders without prior knowledge of control variables in single-cell RNA-seq data. We demonstrate that our method substantially impr...
Autores principales: | Park, Yongjin P., Kellis, Manolis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369635/ https://www.ncbi.nlm.nih.gov/pubmed/34404460 http://dx.doi.org/10.1186/s13059-021-02438-4 |
Ejemplares similares
-
scLink: Inferring Sparse Gene Co-expression Networks from Single-cell Expression Data
por: Li, Wei Vivian, et al.
Publicado: (2021) -
Joint Bayesian inference of risk variants and tissue-specific epigenomic enrichments across multiple complex human diseases
por: Li, Yue, et al.
Publicado: (2016) -
Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks
por: Marbach, Daniel, et al.
Publicado: (2012) -
DiffVar: a new method for detecting differential variability with application to methylation in cancer and aging
por: Phipson, Belinda, et al.
Publicado: (2014) -
COCOA: coordinate covariation analysis of epigenetic heterogeneity
por: Lawson, John T., et al.
Publicado: (2020)