Cargando…
DECIMER 1.0: deep learning for chemical image recognition using transformers
The amount of data available on chemical structures and their properties has increased steadily over the past decades. In particular, articles published before the mid-1990 are available only in printed or scanned form. The extraction and storage of data from those articles in a publicly accessible...
Autores principales: | Rajan, Kohulan, Zielesny, Achim, Steinbeck, Christoph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369700/ https://www.ncbi.nlm.nih.gov/pubmed/34404468 http://dx.doi.org/10.1186/s13321-021-00538-8 |
Ejemplares similares
-
DECIMER: towards deep learning for chemical image recognition
por: Rajan, Kohulan, et al.
Publicado: (2020) -
DECIMER—hand-drawn molecule images dataset
por: Brinkhaus, Henning Otto, et al.
Publicado: (2022) -
DECIMER.ai: an open platform for automated optical chemical structure identification, segmentation and recognition in scientific publications
por: Rajan, Kohulan, et al.
Publicado: (2023) -
Author Correction: DECIMER.ai: an open platform for automated optical chemical structure identification, segmentation and recognition in scientific publications
por: Rajan, Kohulan, et al.
Publicado: (2023) -
DECIMER-Segmentation: Automated extraction of chemical structure depictions from scientific literature
por: Rajan, Kohulan, et al.
Publicado: (2021)