Cargando…
Non-invasive multi-channel deep learning convolutional neural networks for localization and classification of common hepatic lesions
PURPOSE: Machine learning techniques, especially convolutional neural networks (CNN), have revolutionized the spectrum of computer vision tasks with a primary focus on supervised and labelled image datasets. We aimed to assess a novel method to segment the liver from the abdomen computed tomography...
Autores principales: | Shah, Shubham, Mishra, Ruby, Szczurowska, Agata, Guziński, Maciej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369821/ https://www.ncbi.nlm.nih.gov/pubmed/34429791 http://dx.doi.org/10.5114/pjr.2021.108257 |
Ejemplares similares
-
A pictorial essay of the most atypical variants of the vermiform appendix position in computed tomography with their possible clinical implications
por: Zacharzewska-Gondek, Anna, et al.
Publicado: (2019) -
Classification of racehorse limb radiographs using deep convolutional neural networks
por: Costa da Silva, Raniere Gaia, et al.
Publicado: (2023) -
Diagnosing COVID-19 from CT Image of Lung Segmentation & Classification with Deep Learning Based on Convolutional Neural Networks
por: Kumari, K. Sita, et al.
Publicado: (2021) -
Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
por: Burgos-Artizzu, Xavier P., et al.
Publicado: (2020) -
Gas Classification Using Deep Convolutional Neural Networks
por: Peng, Pai, et al.
Publicado: (2018)