Cargando…

MgNb(2)O(6) Modified K(0.5)Na(0.5)NbO(3) Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance

In this work, piezoceramics of the lead‐free composition K(0.5)Na(0.5)NbO(3) with an increasing amount of MgNb(2)O(6) (0, 0.5, 1, 2 wt.%) were prepared through conventional solid‐state synthesis and sintered in air atmosphere at 1100 °C. The effect of magnesium niobate addition on structure, microst...

Descripción completa

Detalles Bibliográficos
Autores principales: Iacomini, Antonio, Garroni, Sebastiano, Senes, Nina, Mulas, Gabriele, Enzo, Stefano, Poddighe, Matteo, García, Álvaro, Bartolomé, José F., Pardo, Lorena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369846/
https://www.ncbi.nlm.nih.gov/pubmed/34402600
http://dx.doi.org/10.1002/open.202100089
_version_ 1783739368325775360
author Iacomini, Antonio
Garroni, Sebastiano
Senes, Nina
Mulas, Gabriele
Enzo, Stefano
Poddighe, Matteo
García, Álvaro
Bartolomé, José F.
Pardo, Lorena
author_facet Iacomini, Antonio
Garroni, Sebastiano
Senes, Nina
Mulas, Gabriele
Enzo, Stefano
Poddighe, Matteo
García, Álvaro
Bartolomé, José F.
Pardo, Lorena
author_sort Iacomini, Antonio
collection PubMed
description In this work, piezoceramics of the lead‐free composition K(0.5)Na(0.5)NbO(3) with an increasing amount of MgNb(2)O(6) (0, 0.5, 1, 2 wt.%) were prepared through conventional solid‐state synthesis and sintered in air atmosphere at 1100 °C. The effect of magnesium niobate addition on structure, microstructure and piezoelectric properties was evaluated. The ceramics maintain the orthorhombic Amm2 phase for all compositions, while an orthorhombic Pbcm secondary phase was found for increasing the concentration of MgNb(2)O(6). Our results show that densification of these ceramics can be significantly improved up to 94.9 % of theoretical density by adding a small amount of magnesium‐based oxide (1 wt.%). Scanning electron microscopy morphology of the 1 wt.% system reveals a well‐packed structure with homogeneous grain size of ∼2.72 μm. Dielectric and piezoelectric properties become optimal for 0.5–1.0 wt.% of MgNb(2)O(6) that shows, with respect to the unmodified composition, either higher piezoelectric coefficients, lower anisotropy and relatively low piezoelectric losses (d(33)=97 pC N(−1); d(31)=−36.99 pC N(−1) and g(31)=−14.04×10(−3) mV N(−1); Q(p)(d(31))=76 and Q(p)(g(31))=69) or enhanced electromechanical coupling factors (k(p)=29.06 % and k(31)=17.25 %).
format Online
Article
Text
id pubmed-8369846
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-83698462021-08-23 MgNb(2)O(6) Modified K(0.5)Na(0.5)NbO(3) Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance Iacomini, Antonio Garroni, Sebastiano Senes, Nina Mulas, Gabriele Enzo, Stefano Poddighe, Matteo García, Álvaro Bartolomé, José F. Pardo, Lorena ChemistryOpen Full Papers In this work, piezoceramics of the lead‐free composition K(0.5)Na(0.5)NbO(3) with an increasing amount of MgNb(2)O(6) (0, 0.5, 1, 2 wt.%) were prepared through conventional solid‐state synthesis and sintered in air atmosphere at 1100 °C. The effect of magnesium niobate addition on structure, microstructure and piezoelectric properties was evaluated. The ceramics maintain the orthorhombic Amm2 phase for all compositions, while an orthorhombic Pbcm secondary phase was found for increasing the concentration of MgNb(2)O(6). Our results show that densification of these ceramics can be significantly improved up to 94.9 % of theoretical density by adding a small amount of magnesium‐based oxide (1 wt.%). Scanning electron microscopy morphology of the 1 wt.% system reveals a well‐packed structure with homogeneous grain size of ∼2.72 μm. Dielectric and piezoelectric properties become optimal for 0.5–1.0 wt.% of MgNb(2)O(6) that shows, with respect to the unmodified composition, either higher piezoelectric coefficients, lower anisotropy and relatively low piezoelectric losses (d(33)=97 pC N(−1); d(31)=−36.99 pC N(−1) and g(31)=−14.04×10(−3) mV N(−1); Q(p)(d(31))=76 and Q(p)(g(31))=69) or enhanced electromechanical coupling factors (k(p)=29.06 % and k(31)=17.25 %). John Wiley and Sons Inc. 2021-08-17 /pmc/articles/PMC8369846/ /pubmed/34402600 http://dx.doi.org/10.1002/open.202100089 Text en © 2021 The Authors. Published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Full Papers
Iacomini, Antonio
Garroni, Sebastiano
Senes, Nina
Mulas, Gabriele
Enzo, Stefano
Poddighe, Matteo
García, Álvaro
Bartolomé, José F.
Pardo, Lorena
MgNb(2)O(6) Modified K(0.5)Na(0.5)NbO(3) Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance
title MgNb(2)O(6) Modified K(0.5)Na(0.5)NbO(3) Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance
title_full MgNb(2)O(6) Modified K(0.5)Na(0.5)NbO(3) Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance
title_fullStr MgNb(2)O(6) Modified K(0.5)Na(0.5)NbO(3) Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance
title_full_unstemmed MgNb(2)O(6) Modified K(0.5)Na(0.5)NbO(3) Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance
title_short MgNb(2)O(6) Modified K(0.5)Na(0.5)NbO(3) Eco‐Piezoceramics: Scalable Processing, Structural Distortion and Complex Impedance at Resonance
title_sort mgnb(2)o(6) modified k(0.5)na(0.5)nbo(3) eco‐piezoceramics: scalable processing, structural distortion and complex impedance at resonance
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369846/
https://www.ncbi.nlm.nih.gov/pubmed/34402600
http://dx.doi.org/10.1002/open.202100089
work_keys_str_mv AT iacominiantonio mgnb2o6modifiedk05na05nbo3ecopiezoceramicsscalableprocessingstructuraldistortionandcompleximpedanceatresonance
AT garronisebastiano mgnb2o6modifiedk05na05nbo3ecopiezoceramicsscalableprocessingstructuraldistortionandcompleximpedanceatresonance
AT senesnina mgnb2o6modifiedk05na05nbo3ecopiezoceramicsscalableprocessingstructuraldistortionandcompleximpedanceatresonance
AT mulasgabriele mgnb2o6modifiedk05na05nbo3ecopiezoceramicsscalableprocessingstructuraldistortionandcompleximpedanceatresonance
AT enzostefano mgnb2o6modifiedk05na05nbo3ecopiezoceramicsscalableprocessingstructuraldistortionandcompleximpedanceatresonance
AT poddighematteo mgnb2o6modifiedk05na05nbo3ecopiezoceramicsscalableprocessingstructuraldistortionandcompleximpedanceatresonance
AT garciaalvaro mgnb2o6modifiedk05na05nbo3ecopiezoceramicsscalableprocessingstructuraldistortionandcompleximpedanceatresonance
AT bartolomejosef mgnb2o6modifiedk05na05nbo3ecopiezoceramicsscalableprocessingstructuraldistortionandcompleximpedanceatresonance
AT pardolorena mgnb2o6modifiedk05na05nbo3ecopiezoceramicsscalableprocessingstructuraldistortionandcompleximpedanceatresonance