Cargando…

Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort

BACKGROUND: Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospec...

Descripción completa

Detalles Bibliográficos
Autores principales: Magunia, Harry, Lederer, Simone, Verbuecheln, Raphael, Gilot, Bryant Joseph, Koeppen, Michael, Haeberle, Helene A., Mirakaj, Valbona, Hofmann, Pascal, Marx, Gernot, Bickenbach, Johannes, Nohe, Boris, Lay, Michael, Spies, Claudia, Edel, Andreas, Schiefenhövel, Fridtjof, Rahmel, Tim, Putensen, Christian, Sellmann, Timur, Koch, Thea, Brandenburger, Timo, Kindgen-Milles, Detlef, Brenner, Thorsten, Berger, Marc, Zacharowski, Kai, Adam, Elisabeth, Posch, Matthias, Moerer, Onnen, Scheer, Christian S., Sedding, Daniel, Weigand, Markus A., Fichtner, Falk, Nau, Carla, Prätsch, Florian, Wiesmann, Thomas, Koch, Christian, Schneider, Gerhard, Lahmer, Tobias, Straub, Andreas, Meiser, Andreas, Weiss, Manfred, Jungwirth, Bettina, Wappler, Frank, Meybohm, Patrick, Herrmann, Johannes, Malek, Nisar, Kohlbacher, Oliver, Biergans, Stephanie, Rosenberger, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370055/
https://www.ncbi.nlm.nih.gov/pubmed/34404458
http://dx.doi.org/10.1186/s13054-021-03720-4
_version_ 1783739404402032640
author Magunia, Harry
Lederer, Simone
Verbuecheln, Raphael
Gilot, Bryant Joseph
Koeppen, Michael
Haeberle, Helene A.
Mirakaj, Valbona
Hofmann, Pascal
Marx, Gernot
Bickenbach, Johannes
Nohe, Boris
Lay, Michael
Spies, Claudia
Edel, Andreas
Schiefenhövel, Fridtjof
Rahmel, Tim
Putensen, Christian
Sellmann, Timur
Koch, Thea
Brandenburger, Timo
Kindgen-Milles, Detlef
Brenner, Thorsten
Berger, Marc
Zacharowski, Kai
Adam, Elisabeth
Posch, Matthias
Moerer, Onnen
Scheer, Christian S.
Sedding, Daniel
Weigand, Markus A.
Fichtner, Falk
Nau, Carla
Prätsch, Florian
Wiesmann, Thomas
Koch, Christian
Schneider, Gerhard
Lahmer, Tobias
Straub, Andreas
Meiser, Andreas
Weiss, Manfred
Jungwirth, Bettina
Wappler, Frank
Meybohm, Patrick
Herrmann, Johannes
Malek, Nisar
Kohlbacher, Oliver
Biergans, Stephanie
Rosenberger, Peter
author_facet Magunia, Harry
Lederer, Simone
Verbuecheln, Raphael
Gilot, Bryant Joseph
Koeppen, Michael
Haeberle, Helene A.
Mirakaj, Valbona
Hofmann, Pascal
Marx, Gernot
Bickenbach, Johannes
Nohe, Boris
Lay, Michael
Spies, Claudia
Edel, Andreas
Schiefenhövel, Fridtjof
Rahmel, Tim
Putensen, Christian
Sellmann, Timur
Koch, Thea
Brandenburger, Timo
Kindgen-Milles, Detlef
Brenner, Thorsten
Berger, Marc
Zacharowski, Kai
Adam, Elisabeth
Posch, Matthias
Moerer, Onnen
Scheer, Christian S.
Sedding, Daniel
Weigand, Markus A.
Fichtner, Falk
Nau, Carla
Prätsch, Florian
Wiesmann, Thomas
Koch, Christian
Schneider, Gerhard
Lahmer, Tobias
Straub, Andreas
Meiser, Andreas
Weiss, Manfred
Jungwirth, Bettina
Wappler, Frank
Meybohm, Patrick
Herrmann, Johannes
Malek, Nisar
Kohlbacher, Oliver
Biergans, Stephanie
Rosenberger, Peter
author_sort Magunia, Harry
collection PubMed
description BACKGROUND: Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes. METHODS: A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported. RESULTS: 1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict “survival”. Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients’ age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy. CONCLUSIONS: Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models. Trial registration “ClinicalTrials” (clinicaltrials.gov) under NCT04455451. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-021-03720-4.
format Online
Article
Text
id pubmed-8370055
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-83700552021-08-18 Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort Magunia, Harry Lederer, Simone Verbuecheln, Raphael Gilot, Bryant Joseph Koeppen, Michael Haeberle, Helene A. Mirakaj, Valbona Hofmann, Pascal Marx, Gernot Bickenbach, Johannes Nohe, Boris Lay, Michael Spies, Claudia Edel, Andreas Schiefenhövel, Fridtjof Rahmel, Tim Putensen, Christian Sellmann, Timur Koch, Thea Brandenburger, Timo Kindgen-Milles, Detlef Brenner, Thorsten Berger, Marc Zacharowski, Kai Adam, Elisabeth Posch, Matthias Moerer, Onnen Scheer, Christian S. Sedding, Daniel Weigand, Markus A. Fichtner, Falk Nau, Carla Prätsch, Florian Wiesmann, Thomas Koch, Christian Schneider, Gerhard Lahmer, Tobias Straub, Andreas Meiser, Andreas Weiss, Manfred Jungwirth, Bettina Wappler, Frank Meybohm, Patrick Herrmann, Johannes Malek, Nisar Kohlbacher, Oliver Biergans, Stephanie Rosenberger, Peter Crit Care Research BACKGROUND: Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes. METHODS: A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported. RESULTS: 1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict “survival”. Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients’ age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy. CONCLUSIONS: Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models. Trial registration “ClinicalTrials” (clinicaltrials.gov) under NCT04455451. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-021-03720-4. BioMed Central 2021-08-17 /pmc/articles/PMC8370055/ /pubmed/34404458 http://dx.doi.org/10.1186/s13054-021-03720-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Magunia, Harry
Lederer, Simone
Verbuecheln, Raphael
Gilot, Bryant Joseph
Koeppen, Michael
Haeberle, Helene A.
Mirakaj, Valbona
Hofmann, Pascal
Marx, Gernot
Bickenbach, Johannes
Nohe, Boris
Lay, Michael
Spies, Claudia
Edel, Andreas
Schiefenhövel, Fridtjof
Rahmel, Tim
Putensen, Christian
Sellmann, Timur
Koch, Thea
Brandenburger, Timo
Kindgen-Milles, Detlef
Brenner, Thorsten
Berger, Marc
Zacharowski, Kai
Adam, Elisabeth
Posch, Matthias
Moerer, Onnen
Scheer, Christian S.
Sedding, Daniel
Weigand, Markus A.
Fichtner, Falk
Nau, Carla
Prätsch, Florian
Wiesmann, Thomas
Koch, Christian
Schneider, Gerhard
Lahmer, Tobias
Straub, Andreas
Meiser, Andreas
Weiss, Manfred
Jungwirth, Bettina
Wappler, Frank
Meybohm, Patrick
Herrmann, Johannes
Malek, Nisar
Kohlbacher, Oliver
Biergans, Stephanie
Rosenberger, Peter
Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort
title Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort
title_full Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort
title_fullStr Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort
title_full_unstemmed Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort
title_short Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort
title_sort machine learning identifies icu outcome predictors in a multicenter covid-19 cohort
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370055/
https://www.ncbi.nlm.nih.gov/pubmed/34404458
http://dx.doi.org/10.1186/s13054-021-03720-4
work_keys_str_mv AT maguniaharry machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT lederersimone machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT verbuechelnraphael machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT gilotbryantjoseph machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT koeppenmichael machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT haeberlehelenea machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT mirakajvalbona machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT hofmannpascal machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT marxgernot machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT bickenbachjohannes machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT noheboris machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT laymichael machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT spiesclaudia machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT edelandreas machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT schiefenhovelfridtjof machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT rahmeltim machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT putensenchristian machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT sellmanntimur machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT kochthea machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT brandenburgertimo machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT kindgenmillesdetlef machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT brennerthorsten machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT bergermarc machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT zacharowskikai machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT adamelisabeth machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT poschmatthias machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT moereronnen machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT scheerchristians machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT seddingdaniel machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT weigandmarkusa machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT fichtnerfalk machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT naucarla machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT pratschflorian machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT wiesmannthomas machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT kochchristian machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT schneidergerhard machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT lahmertobias machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT straubandreas machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT meiserandreas machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT weissmanfred machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT jungwirthbettina machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT wapplerfrank machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT meybohmpatrick machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT herrmannjohannes machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT maleknisar machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT kohlbacheroliver machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT biergansstephanie machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort
AT rosenbergerpeter machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort