Cargando…
Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort
BACKGROUND: Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospec...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370055/ https://www.ncbi.nlm.nih.gov/pubmed/34404458 http://dx.doi.org/10.1186/s13054-021-03720-4 |
_version_ | 1783739404402032640 |
---|---|
author | Magunia, Harry Lederer, Simone Verbuecheln, Raphael Gilot, Bryant Joseph Koeppen, Michael Haeberle, Helene A. Mirakaj, Valbona Hofmann, Pascal Marx, Gernot Bickenbach, Johannes Nohe, Boris Lay, Michael Spies, Claudia Edel, Andreas Schiefenhövel, Fridtjof Rahmel, Tim Putensen, Christian Sellmann, Timur Koch, Thea Brandenburger, Timo Kindgen-Milles, Detlef Brenner, Thorsten Berger, Marc Zacharowski, Kai Adam, Elisabeth Posch, Matthias Moerer, Onnen Scheer, Christian S. Sedding, Daniel Weigand, Markus A. Fichtner, Falk Nau, Carla Prätsch, Florian Wiesmann, Thomas Koch, Christian Schneider, Gerhard Lahmer, Tobias Straub, Andreas Meiser, Andreas Weiss, Manfred Jungwirth, Bettina Wappler, Frank Meybohm, Patrick Herrmann, Johannes Malek, Nisar Kohlbacher, Oliver Biergans, Stephanie Rosenberger, Peter |
author_facet | Magunia, Harry Lederer, Simone Verbuecheln, Raphael Gilot, Bryant Joseph Koeppen, Michael Haeberle, Helene A. Mirakaj, Valbona Hofmann, Pascal Marx, Gernot Bickenbach, Johannes Nohe, Boris Lay, Michael Spies, Claudia Edel, Andreas Schiefenhövel, Fridtjof Rahmel, Tim Putensen, Christian Sellmann, Timur Koch, Thea Brandenburger, Timo Kindgen-Milles, Detlef Brenner, Thorsten Berger, Marc Zacharowski, Kai Adam, Elisabeth Posch, Matthias Moerer, Onnen Scheer, Christian S. Sedding, Daniel Weigand, Markus A. Fichtner, Falk Nau, Carla Prätsch, Florian Wiesmann, Thomas Koch, Christian Schneider, Gerhard Lahmer, Tobias Straub, Andreas Meiser, Andreas Weiss, Manfred Jungwirth, Bettina Wappler, Frank Meybohm, Patrick Herrmann, Johannes Malek, Nisar Kohlbacher, Oliver Biergans, Stephanie Rosenberger, Peter |
author_sort | Magunia, Harry |
collection | PubMed |
description | BACKGROUND: Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes. METHODS: A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported. RESULTS: 1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict “survival”. Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients’ age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy. CONCLUSIONS: Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models. Trial registration “ClinicalTrials” (clinicaltrials.gov) under NCT04455451. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-021-03720-4. |
format | Online Article Text |
id | pubmed-8370055 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-83700552021-08-18 Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort Magunia, Harry Lederer, Simone Verbuecheln, Raphael Gilot, Bryant Joseph Koeppen, Michael Haeberle, Helene A. Mirakaj, Valbona Hofmann, Pascal Marx, Gernot Bickenbach, Johannes Nohe, Boris Lay, Michael Spies, Claudia Edel, Andreas Schiefenhövel, Fridtjof Rahmel, Tim Putensen, Christian Sellmann, Timur Koch, Thea Brandenburger, Timo Kindgen-Milles, Detlef Brenner, Thorsten Berger, Marc Zacharowski, Kai Adam, Elisabeth Posch, Matthias Moerer, Onnen Scheer, Christian S. Sedding, Daniel Weigand, Markus A. Fichtner, Falk Nau, Carla Prätsch, Florian Wiesmann, Thomas Koch, Christian Schneider, Gerhard Lahmer, Tobias Straub, Andreas Meiser, Andreas Weiss, Manfred Jungwirth, Bettina Wappler, Frank Meybohm, Patrick Herrmann, Johannes Malek, Nisar Kohlbacher, Oliver Biergans, Stephanie Rosenberger, Peter Crit Care Research BACKGROUND: Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes. METHODS: A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported. RESULTS: 1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict “survival”. Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients’ age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy. CONCLUSIONS: Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models. Trial registration “ClinicalTrials” (clinicaltrials.gov) under NCT04455451. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13054-021-03720-4. BioMed Central 2021-08-17 /pmc/articles/PMC8370055/ /pubmed/34404458 http://dx.doi.org/10.1186/s13054-021-03720-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Magunia, Harry Lederer, Simone Verbuecheln, Raphael Gilot, Bryant Joseph Koeppen, Michael Haeberle, Helene A. Mirakaj, Valbona Hofmann, Pascal Marx, Gernot Bickenbach, Johannes Nohe, Boris Lay, Michael Spies, Claudia Edel, Andreas Schiefenhövel, Fridtjof Rahmel, Tim Putensen, Christian Sellmann, Timur Koch, Thea Brandenburger, Timo Kindgen-Milles, Detlef Brenner, Thorsten Berger, Marc Zacharowski, Kai Adam, Elisabeth Posch, Matthias Moerer, Onnen Scheer, Christian S. Sedding, Daniel Weigand, Markus A. Fichtner, Falk Nau, Carla Prätsch, Florian Wiesmann, Thomas Koch, Christian Schneider, Gerhard Lahmer, Tobias Straub, Andreas Meiser, Andreas Weiss, Manfred Jungwirth, Bettina Wappler, Frank Meybohm, Patrick Herrmann, Johannes Malek, Nisar Kohlbacher, Oliver Biergans, Stephanie Rosenberger, Peter Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort |
title | Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort |
title_full | Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort |
title_fullStr | Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort |
title_full_unstemmed | Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort |
title_short | Machine learning identifies ICU outcome predictors in a multicenter COVID-19 cohort |
title_sort | machine learning identifies icu outcome predictors in a multicenter covid-19 cohort |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370055/ https://www.ncbi.nlm.nih.gov/pubmed/34404458 http://dx.doi.org/10.1186/s13054-021-03720-4 |
work_keys_str_mv | AT maguniaharry machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT lederersimone machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT verbuechelnraphael machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT gilotbryantjoseph machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT koeppenmichael machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT haeberlehelenea machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT mirakajvalbona machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT hofmannpascal machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT marxgernot machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT bickenbachjohannes machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT noheboris machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT laymichael machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT spiesclaudia machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT edelandreas machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT schiefenhovelfridtjof machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT rahmeltim machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT putensenchristian machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT sellmanntimur machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT kochthea machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT brandenburgertimo machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT kindgenmillesdetlef machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT brennerthorsten machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT bergermarc machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT zacharowskikai machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT adamelisabeth machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT poschmatthias machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT moereronnen machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT scheerchristians machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT seddingdaniel machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT weigandmarkusa machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT fichtnerfalk machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT naucarla machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT pratschflorian machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT wiesmannthomas machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT kochchristian machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT schneidergerhard machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT lahmertobias machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT straubandreas machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT meiserandreas machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT weissmanfred machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT jungwirthbettina machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT wapplerfrank machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT meybohmpatrick machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT herrmannjohannes machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT maleknisar machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT kohlbacheroliver machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT biergansstephanie machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort AT rosenbergerpeter machinelearningidentifiesicuoutcomepredictorsinamulticentercovid19cohort |