Cargando…

Heterocyclic compounds derived from cyclohexane-1,4-dione: synthesis of tetrahydro-4H-chromene and tetrahydrobenzo[d]thiazole derivatives as target SARS-CoV-2 main protease (Mpro) and potential anti-Covid-19

Tetrahydro-4H-chromene-3-carbonitrile derivatives 4a-c where prepared from the reaction of 1,4-cyclohexane dione (1), malononitrile (2) and either of benzaldehyde (3a), 2-chlorobenzaldehyde (3b) or 4-methoxybenzaldehyde (3c) in ethanol containing triethylamine. Compound 4b was used to prepare pyrazo...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohareb, Rafat Milad, Megally Abdo, Nadia Youssef
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370666/
http://dx.doi.org/10.1007/s13738-021-02366-x
_version_ 1783739495511752704
author Mohareb, Rafat Milad
Megally Abdo, Nadia Youssef
author_facet Mohareb, Rafat Milad
Megally Abdo, Nadia Youssef
author_sort Mohareb, Rafat Milad
collection PubMed
description Tetrahydro-4H-chromene-3-carbonitrile derivatives 4a-c where prepared from the reaction of 1,4-cyclohexane dione (1), malononitrile (2) and either of benzaldehyde (3a), 2-chlorobenzaldehyde (3b) or 4-methoxybenzaldehyde (3c) in ethanol containing triethylamine. Compound 4b was used to prepare pyrazole, pyrimidine and thiazole derivatives. Moreover, tetrahydrobenzo[d]thiazole derivative 18 was prepared from the reaction of 1,4-cyclohexane dione (1) with elemental sulfur followed by phenyl isothiocyanate (12) in absolute ethanol containing triethylamine. The latter compound reacted with ethyl orthoformate and either malononitrile or ethyl cyanoacetate in 1,4-dioxane in the presence of triethylamine to produce the 9-ethoxy-2H-chromeno[6,5-d]thiazole derivatives 20a,b. In addition, fused thiophene and pyran derivatives were synthesized starting from compound 18. The screened compounds were designed as mimics of the transition state of RNA2’-O-methylation were screened against several viral RNA 2’-OMTases from SARS-CoV (nsp10/nsp16 complex), Zika, West Nile, dengue, vaccinia (VP39) viruses. At the same time, the compounds were tested against human RNA N7-MTase (hRNMT) and selected viral N7-MTases such as SARS-CoV nsp14 and vaccinia D1-D12 complex to evaluate their specificity. Compounds 4a, 4b, 6b, 6c, 6e, 9a, 9b, 15, 16, 21b, and 23b showed high % inhibitions against SARs-Cov nsp 14 with values 93.42, 87.49, 98.23, 88.15, 89.24, 96.31, 93.28, 89.25, 89.20, 87.24, and 94.49, respectively.
format Online
Article
Text
id pubmed-8370666
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-83706662021-08-18 Heterocyclic compounds derived from cyclohexane-1,4-dione: synthesis of tetrahydro-4H-chromene and tetrahydrobenzo[d]thiazole derivatives as target SARS-CoV-2 main protease (Mpro) and potential anti-Covid-19 Mohareb, Rafat Milad Megally Abdo, Nadia Youssef J IRAN CHEM SOC Original Paper Tetrahydro-4H-chromene-3-carbonitrile derivatives 4a-c where prepared from the reaction of 1,4-cyclohexane dione (1), malononitrile (2) and either of benzaldehyde (3a), 2-chlorobenzaldehyde (3b) or 4-methoxybenzaldehyde (3c) in ethanol containing triethylamine. Compound 4b was used to prepare pyrazole, pyrimidine and thiazole derivatives. Moreover, tetrahydrobenzo[d]thiazole derivative 18 was prepared from the reaction of 1,4-cyclohexane dione (1) with elemental sulfur followed by phenyl isothiocyanate (12) in absolute ethanol containing triethylamine. The latter compound reacted with ethyl orthoformate and either malononitrile or ethyl cyanoacetate in 1,4-dioxane in the presence of triethylamine to produce the 9-ethoxy-2H-chromeno[6,5-d]thiazole derivatives 20a,b. In addition, fused thiophene and pyran derivatives were synthesized starting from compound 18. The screened compounds were designed as mimics of the transition state of RNA2’-O-methylation were screened against several viral RNA 2’-OMTases from SARS-CoV (nsp10/nsp16 complex), Zika, West Nile, dengue, vaccinia (VP39) viruses. At the same time, the compounds were tested against human RNA N7-MTase (hRNMT) and selected viral N7-MTases such as SARS-CoV nsp14 and vaccinia D1-D12 complex to evaluate their specificity. Compounds 4a, 4b, 6b, 6c, 6e, 9a, 9b, 15, 16, 21b, and 23b showed high % inhibitions against SARs-Cov nsp 14 with values 93.42, 87.49, 98.23, 88.15, 89.24, 96.31, 93.28, 89.25, 89.20, 87.24, and 94.49, respectively. Springer Berlin Heidelberg 2021-08-17 2022 /pmc/articles/PMC8370666/ http://dx.doi.org/10.1007/s13738-021-02366-x Text en © Iranian Chemical Society 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Original Paper
Mohareb, Rafat Milad
Megally Abdo, Nadia Youssef
Heterocyclic compounds derived from cyclohexane-1,4-dione: synthesis of tetrahydro-4H-chromene and tetrahydrobenzo[d]thiazole derivatives as target SARS-CoV-2 main protease (Mpro) and potential anti-Covid-19
title Heterocyclic compounds derived from cyclohexane-1,4-dione: synthesis of tetrahydro-4H-chromene and tetrahydrobenzo[d]thiazole derivatives as target SARS-CoV-2 main protease (Mpro) and potential anti-Covid-19
title_full Heterocyclic compounds derived from cyclohexane-1,4-dione: synthesis of tetrahydro-4H-chromene and tetrahydrobenzo[d]thiazole derivatives as target SARS-CoV-2 main protease (Mpro) and potential anti-Covid-19
title_fullStr Heterocyclic compounds derived from cyclohexane-1,4-dione: synthesis of tetrahydro-4H-chromene and tetrahydrobenzo[d]thiazole derivatives as target SARS-CoV-2 main protease (Mpro) and potential anti-Covid-19
title_full_unstemmed Heterocyclic compounds derived from cyclohexane-1,4-dione: synthesis of tetrahydro-4H-chromene and tetrahydrobenzo[d]thiazole derivatives as target SARS-CoV-2 main protease (Mpro) and potential anti-Covid-19
title_short Heterocyclic compounds derived from cyclohexane-1,4-dione: synthesis of tetrahydro-4H-chromene and tetrahydrobenzo[d]thiazole derivatives as target SARS-CoV-2 main protease (Mpro) and potential anti-Covid-19
title_sort heterocyclic compounds derived from cyclohexane-1,4-dione: synthesis of tetrahydro-4h-chromene and tetrahydrobenzo[d]thiazole derivatives as target sars-cov-2 main protease (mpro) and potential anti-covid-19
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370666/
http://dx.doi.org/10.1007/s13738-021-02366-x
work_keys_str_mv AT moharebrafatmilad heterocycliccompoundsderivedfromcyclohexane14dionesynthesisoftetrahydro4hchromeneandtetrahydrobenzodthiazolederivativesastargetsarscov2mainproteasemproandpotentialanticovid19
AT megallyabdonadiayoussef heterocycliccompoundsderivedfromcyclohexane14dionesynthesisoftetrahydro4hchromeneandtetrahydrobenzodthiazolederivativesastargetsarscov2mainproteasemproandpotentialanticovid19