Cargando…
Dexmedetomidine Directs T Helper Cells toward Th1 Cell Differentiation via the STAT1-T-Bet Pathway
Dexmedetomidine is an α2 adrenergic receptor agonist that has been reported to modulate the polarization of CD4+ T cells. However, the underlying mechanisms by which dexmedetomidine induces T-helper 1 (Th1) cell differentiation remain poorly understood. The aim of this study was to explore the poten...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370820/ https://www.ncbi.nlm.nih.gov/pubmed/34414234 http://dx.doi.org/10.1155/2021/3725316 |
Sumario: | Dexmedetomidine is an α2 adrenergic receptor agonist that has been reported to modulate the polarization of CD4+ T cells. However, the underlying mechanisms by which dexmedetomidine induces T-helper 1 (Th1) cell differentiation remain poorly understood. The aim of this study was to explore the potential mechanisms through which dexmedetomidine can induce Th1 cell differentiation. Purified CD4+ T cells were stimulated with anti-CD3/anti-CD28 and then treated with dexmedetomidine. Flow cytometry analysis was adopted to measure the concentration of Th1 cells. Enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (qPCR) were performed to detect protein levels and mRNA expression, respectively, of IFN-γ and IL-4. Western blotting was used to determine the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and T-bet expression. The Th1 cell subset and IFN-γ levels were elevated in the dexmedetomidine-induced CD4+ T cells. Dexmedetomidine enhanced the phosphorylation of STAT1 and the expression of T-bet in the CD4+ T cells. Atipamezole (an α2 adrenergic antagonist) and fludarabine (a STAT1 inhibitor) reversed the dexmedetomidine-induced Th1 cell differentiation. These results suggested that dexmedetomidine induced Th1 cell differentiation via the STAT1-T-bet signaling pathway. |
---|