Cargando…
Detecting alternative attractors in ecosystem dynamics
Dynamical systems theory suggests that ecosystems may exhibit alternative dynamical attractors. Such alternative attractors, as for example equilibria and cycles, have been found in the dynamics of experimental systems. Yet, for natural systems, where multiple biotic and abiotic factors simultaneous...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370982/ https://www.ncbi.nlm.nih.gov/pubmed/34404903 http://dx.doi.org/10.1038/s42003-021-02471-w |
Sumario: | Dynamical systems theory suggests that ecosystems may exhibit alternative dynamical attractors. Such alternative attractors, as for example equilibria and cycles, have been found in the dynamics of experimental systems. Yet, for natural systems, where multiple biotic and abiotic factors simultaneously affect population dynamics, it is more challenging to distinguish alternative dynamical behaviors. Although recent research exemplifies that some natural systems can exhibit alternative states, a robust methodology for testing whether these constitute distinct dynamical attractors is currently lacking. Here, using attractor reconstruction techniques we develop such a test. Applications of the methodology to simulated, experimental and natural time series data, reveal that alternative dynamical behaviors are hard to distinguish if population dynamics are governed by purely stochastic processes. However, if population dynamics are brought about also by mechanisms internal to the system, alternative attractors can readily be detected. Since many natural populations display evidence of such internally driven dynamics, our approach offers a method for empirically testing whether ecosystems exhibit alternative dynamical attractors. |
---|