Cargando…
Deep forest model for diagnosing COVID-19 from routine blood tests
The Coronavirus Disease 2019 (COVID-19) global pandemic has threatened the lives of people worldwide and posed considerable challenges. Early and accurate screening of infected people is vital for combating the disease. To help with the limited quantity of swab tests, we propose a machine learning p...
Autores principales: | AlJame, Maryam, Imtiaz, Ayyub, Ahmad, Imtiaz, Mohammed, Ameer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371014/ https://www.ncbi.nlm.nih.gov/pubmed/34404838 http://dx.doi.org/10.1038/s41598-021-95957-w |
Ejemplares similares
-
Ensemble learning model for diagnosing COVID-19 from routine blood tests
por: AlJame, Maryam, et al.
Publicado: (2020) -
COVID-19 psychosis versus psychosis due to cytotoxic lesion of the corpus callosum (CLOCC): A case report and review
por: Levin, Yuval, et al.
Publicado: (2023) -
Diagnosing brain tumours by routine blood tests using machine learning
por: Podnar, Simon, et al.
Publicado: (2019) -
Equilibrium-based COVID-19 diagnosis from routine blood tests: A sparse deep convolutional model
por: Altantawy, Doaa A., et al.
Publicado: (2023) -
Routine blood testing
por: CERN PhotoLab
Publicado: (1968)