Cargando…
Affective Concept-Based Encoding of Patient Narratives via Sentic Computing and Neural Networks
The automatic generation of features without human intervention is the most critical task for biomedical sentiment analysis. Regarding the high dynamicity of shared patient narrative data, the lack of formal medical language sentiment dictionaries prevents retrieval of the appropriate sentiment, whi...
Autores principales: | Grissette, Hanane, Nfaoui, El Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371039/ https://www.ncbi.nlm.nih.gov/pubmed/34422122 http://dx.doi.org/10.1007/s12559-021-09903-z |
Ejemplares similares
-
Deep associative learning approach for bio-medical sentiment analysis utilizing unsupervised representation from large-scale patients’ narratives
por: Grissette, Hanane, et al.
Publicado: (2021) -
DomainSenticNet: An Ontology and a Methodology Enabling Domain-Aware Sentic Computing
por: Distante, Damiano, et al.
Publicado: (2021) -
Sentic computing: a common-sense-based framework for concept-level sentiment analysis
por: Cambria, Erik
Publicado: (2015) -
Guest Editorial: A Decade of Sentic Computing
por: Cambria, Erik, et al.
Publicado: (2022) -
The SenticNet sentiment lexicon
por: Biagioni, Raoul
Publicado: (2016)