Cargando…
Learning spin liquids on a honeycomb lattice with artificial neural networks
Machine learning methods provide a new perspective on the study of many-body system in condensed matter physics and there is only limited understanding of their representational properties and limitations in quantum spin liquid systems. In this work, we investigate the ability of the machine learnin...
Autores principales: | Li, Chang-Xiao, Yang, Sheng, Xu, Jing-Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371168/ https://www.ncbi.nlm.nih.gov/pubmed/34404816 http://dx.doi.org/10.1038/s41598-021-95523-4 |
Ejemplares similares
-
Author Correction: Learning spin liquids on a honeycomb lattice with artificial neural networks
por: Li, Chang‑Xiao, et al.
Publicado: (2021) -
Randomness-induced quantum spin liquid on honeycomb lattice
por: Yamaguchi, Hironori, et al.
Publicado: (2017) -
Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice
por: Sorella, Sandro, et al.
Publicado: (2012) -
Candidate Quantum Spin Liquid due to Dimensional Reduction of a Two-Dimensional Honeycomb Lattice
por: Zhang, Bin, et al.
Publicado: (2014) -
Spin Solid versus Magnetic Charge Ordered State in Artificial Honeycomb Lattice of Connected Elements
por: Glavic, Artur, et al.
Publicado: (2018)