Cargando…

Nanoscale zero-valent iron loaded vermiform expanded graphite for the removal of Cr (VI) from aqueous solution

Cr (VI) is indispensable in industrial manufacturing, and its extensive use leads to severe heavy-metal pollution in the water environment around people, posing a great danger to physical health and living environment of multitudinous organisms. Expanded graphite (EG) is considered as a typical mate...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Xinwei, Qiu, Yangshuai, Zhou, Yanhong, Jiao, Xuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371360/
https://www.ncbi.nlm.nih.gov/pubmed/34457347
http://dx.doi.org/10.1098/rsos.210801
Descripción
Sumario:Cr (VI) is indispensable in industrial manufacturing, and its extensive use leads to severe heavy-metal pollution in the water environment around people, posing a great danger to physical health and living environment of multitudinous organisms. Expanded graphite (EG) is considered as a typical material for adsorption, while nanoscale zero-valent iron (nZVI) can be applied to degrade and sedimentate various organic or inorganic pollutants. In this study, a simultaneous collaboration of EG and nZVI is carried out, with the investigation on the influence of different test conditions for adsorption performances. These findings demonstrate that nZVI@EG manifests favourable adsorptive performance on the removal of hexavalent chromium efficiently. nZVI, acting as an electron donor, is supposed to reduce Cr (VI) to Cr (III), turning itself into iron oxide or hydroxide. The whole process is an exothermic reaction, accompanying chemical reduction and physical adsorption. And Cr (III) is fastened on the appearance by deposition of chromium hydroxide or ferrochromium complex precipitation, which greatly reduces the total chromium content in the aqueous solution. Herein, as a new composite adsorbent, nZVI@EG shows promising prospects of practical applications in water contamination and environmental remediation.