Cargando…

On the identification of power-law creep parameters from conical indentation

Load and hold conical indentation responses calculated for materials having creep stress exponents of 1.15, 3.59 and 6.60 are regarded as input ‘experimental’ responses. A Bayesian-type statistical approach (Zhang et al. 2019 J. Appl. Mech. 86, 011002 (doi:10.1115/1.4041352)) is used to infer power-...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yupeng, Needleman, Alan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371371/
https://www.ncbi.nlm.nih.gov/pubmed/35153575
http://dx.doi.org/10.1098/rspa.2021.0233
_version_ 1783739627370184704
author Zhang, Yupeng
Needleman, Alan
author_facet Zhang, Yupeng
Needleman, Alan
author_sort Zhang, Yupeng
collection PubMed
description Load and hold conical indentation responses calculated for materials having creep stress exponents of 1.15, 3.59 and 6.60 are regarded as input ‘experimental’ responses. A Bayesian-type statistical approach (Zhang et al. 2019 J. Appl. Mech. 86, 011002 (doi:10.1115/1.4041352)) is used to infer power-law creep parameters, the creep exponent and the associated pre-exponential factor, from noise-free as well as noise-contaminated indentation data. A database for the Bayesian-type analysis is created using finite-element calculations for a coarse set of parameter values with interpolation used to create the refined database used for parameter identification. Uniaxial creep and stress relaxation responses using the identified creep parameters provide a very good approximation to those of the ‘experimental’ materials with stress exponents of 1.15 and 3.59. The sensitivity to noise increases with increasing stress exponent. The uniaxial creep response is more sensitive to the accuracy of the predictions than the uniaxial stress relaxation response. Good agreement with the indentation response does not guarantee good agreement with the uniaxial response. If the noise level is sufficiently small, the model of Bower et al. (1993 Proc. R. Soc. Lond. A 441, 97–124 ()) provides a good fit to the ‘experimental’ data for all values of creep stress exponent considered, while the model of Ginder et al. (2018 J. Mech. Phys. Solids 112, 552–562 ()) provides a good fit for a creep stress exponent of 1.15.
format Online
Article
Text
id pubmed-8371371
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-83713712022-02-11 On the identification of power-law creep parameters from conical indentation Zhang, Yupeng Needleman, Alan Proc Math Phys Eng Sci Research Articles Load and hold conical indentation responses calculated for materials having creep stress exponents of 1.15, 3.59 and 6.60 are regarded as input ‘experimental’ responses. A Bayesian-type statistical approach (Zhang et al. 2019 J. Appl. Mech. 86, 011002 (doi:10.1115/1.4041352)) is used to infer power-law creep parameters, the creep exponent and the associated pre-exponential factor, from noise-free as well as noise-contaminated indentation data. A database for the Bayesian-type analysis is created using finite-element calculations for a coarse set of parameter values with interpolation used to create the refined database used for parameter identification. Uniaxial creep and stress relaxation responses using the identified creep parameters provide a very good approximation to those of the ‘experimental’ materials with stress exponents of 1.15 and 3.59. The sensitivity to noise increases with increasing stress exponent. The uniaxial creep response is more sensitive to the accuracy of the predictions than the uniaxial stress relaxation response. Good agreement with the indentation response does not guarantee good agreement with the uniaxial response. If the noise level is sufficiently small, the model of Bower et al. (1993 Proc. R. Soc. Lond. A 441, 97–124 ()) provides a good fit to the ‘experimental’ data for all values of creep stress exponent considered, while the model of Ginder et al. (2018 J. Mech. Phys. Solids 112, 552–562 ()) provides a good fit for a creep stress exponent of 1.15. The Royal Society Publishing 2021-08 2021-08-18 /pmc/articles/PMC8371371/ /pubmed/35153575 http://dx.doi.org/10.1098/rspa.2021.0233 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited.
spellingShingle Research Articles
Zhang, Yupeng
Needleman, Alan
On the identification of power-law creep parameters from conical indentation
title On the identification of power-law creep parameters from conical indentation
title_full On the identification of power-law creep parameters from conical indentation
title_fullStr On the identification of power-law creep parameters from conical indentation
title_full_unstemmed On the identification of power-law creep parameters from conical indentation
title_short On the identification of power-law creep parameters from conical indentation
title_sort on the identification of power-law creep parameters from conical indentation
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371371/
https://www.ncbi.nlm.nih.gov/pubmed/35153575
http://dx.doi.org/10.1098/rspa.2021.0233
work_keys_str_mv AT zhangyupeng ontheidentificationofpowerlawcreepparametersfromconicalindentation
AT needlemanalan ontheidentificationofpowerlawcreepparametersfromconicalindentation