Cargando…
SERR-U-Net: Squeeze-and-Excitation Residual and Recurrent Block-Based U-Net for Automatic Vessel Segmentation in Retinal Image
METHODS: A new SERR-U-Net framework for retinal vessel segmentation is proposed, which leverages technologies including Squeeze-and-Excitation (SE), residual module, and recurrent block. First, the convolution layers of encoder and decoder are modified on the basis of U-Net, and the recurrent block...
Autores principales: | Wang, Jinke, Li, Xiang, Lv, Peiqing, Shi, Changfa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371614/ https://www.ncbi.nlm.nih.gov/pubmed/34422093 http://dx.doi.org/10.1155/2021/5976097 |
Ejemplares similares
-
Deep supervision and atrous inception-based U-Net combining CRF for automatic liver segmentation from CT
por: Lv, Peiqing, et al.
Publicado: (2022) -
Multi-Layer Preprocessing and U-Net with Residual Attention Block for Retinal Blood Vessel Segmentation
por: Alsayat, Ahmed, et al.
Publicado: (2023) -
Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation
por: Wu, Jin, et al.
Publicado: (2022) -
Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation
por: Liu, Congjun, et al.
Publicado: (2022) -
An improved U-net based retinal vessel image segmentation method
por: Ren, Kan, et al.
Publicado: (2022)