Cargando…

Image Fusion Algorithm at Pixel Level Based on Edge Detection

In the present scenario, image fusion is utilized at a large level for various applications. But, the techniques and algorithms are cumbersome and time-consuming. So, aiming at the problems of low efficiency, long running time, missing image detail information, and poor image fusion, the image fusio...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jiming, Chen, Liping, Shabaz, Mohammad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371621/
https://www.ncbi.nlm.nih.gov/pubmed/34422244
http://dx.doi.org/10.1155/2021/5760660
Descripción
Sumario:In the present scenario, image fusion is utilized at a large level for various applications. But, the techniques and algorithms are cumbersome and time-consuming. So, aiming at the problems of low efficiency, long running time, missing image detail information, and poor image fusion, the image fusion algorithm at pixel level based on edge detection is proposed. The improved ROEWA (Ratio of Exponentially Weighted Averages) operator is used to detect the edge of the image. The variable precision fitting algorithm and edge curvature change are used to extract the feature line of the image edge and edge angle point of the feature to improve the stability of image fusion. According to the information and characteristics of the high-frequency region and low-frequency region, different image fusion rules are set. To cope with the high-frequency area, the local energy weighted fusion approach based on edge information is utilized. The low-frequency region is processed by merging the region energy with the weighting factor, and the fusion results of the high findings demonstrate that the image fusion technique presented in this work increases the resolution by 1.23 and 1.01, respectively, when compared to the two standard approaches. When compared to the two standard approaches, the experimental results show that the proposed algorithm can effectively reduce the lack of image information. The sharpness and information entropy of the fused image are higher than the experimental comparison method, and the running time is shorter and has better robustness.