Cargando…
Syntax-based transfer learning for the task of biomedical relation extraction
BACKGROUND: Transfer learning aims at enhancing machine learning performance on a problem by reusing labeled data originally designed for a related, but distinct problem. In particular, domain adaptation consists for a specific task, in reusing training data developedfor the same task but a distinct...
Autores principales: | Legrand, Joël, Toussaint, Yannick, Raïssi, Chedy, Coulet, Adrien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371836/ https://www.ncbi.nlm.nih.gov/pubmed/34407869 http://dx.doi.org/10.1186/s13326-021-00248-y |
Ejemplares similares
-
Learning from biomedical linked data to suggest valid pharmacogenes
por: Dalleau, Kevin, et al.
Publicado: (2017) -
Drug drug interaction extraction from biomedical literature using syntax convolutional neural network
por: Zhao, Zhehuan, et al.
Publicado: (2016) -
Artificial Grammar Learning Capabilities in an Abstract Visual Task Match Requirements for Linguistic Syntax
por: Westphal-Fitch, Gesche, et al.
Publicado: (2018) -
Task-Induced Functional Connectivity of the Syntax-Related Networks for Patients with a Cortical Glioma
por: Tanaka, Kyohei, et al.
Publicado: (2020) -
Wide-coverage relation extraction from MEDLINE using deep syntax
por: Nguyen, Nhung TH, et al.
Publicado: (2015)